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A B S T R A C T

The response selection has been an emerging research topic due to the growing interest in dia-
logue modeling, where the goal of the task is to select an appropriate response for continuing
dialogues. To further push the end-to-end dialogue model toward real-world scenarios, the
seventh Dialog System Technology Challenge (DSTC7) proposed a challenge track based on
real chatlog datasets. The competition focuses on dialogue modeling with several advanced
characteristics: (1) natural language diversity, (2) capability of precisely selecting a proper
response from a large set of candidates or the scenario without any correct answer, and (3)
knowledge grounding. This paper introduces recurrent attention pooling networks (RAP-Net), a
novel framework for response selection, which can well estimate the relevance between the
dialogue contexts and the candidates. The proposed RAP-Net is shown to be effective and can
be generalize across different datasets and settings in the DSTC7 experiments.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

With the increasing trend about dialogue modeling, response selection and generation have been widely studied in the NLP com-
munity. In order to further evaluate the current capability of machine learning models, a benchmark dataset was proposed in the sev-
enth Dialog System Technology Challenge (DSTC7) (D’Haro et al., 2020), where the task is to select the most probable response given a
partial conversation. To approximate the real world scenarios, several variants of selections are investigated in this task: (1) selecting
from 100 candidates, (2) selecting from 120,000 candidates, (3) selecting multiple answers, (4) there may be no answer, and (5) with
external information. In addition, the ability of generalization should be examined; hence, two datasets, Ubuntu IRC dialogs (Kummer-
feld et al., 2018) and course advising corpus, are utilized for the experiments. These datasets have very different properties, where the
dialogs in the Ubuntu IRC dialogs dataset are very technical, and are more problem-solving-oriented, while the dialogs in the course
advising dataset tend to be more casual, and the goals are more like inquiring information rather than solving a specific problem. The
course advising dataset also comes with metadata about participants’ profiles and course information, which can be leveraged as
domain-specific knowledge to enhance dialoguemodeling. In sum, the challenge covers a wide range of scenarios in real-world applica-
tions and serves as a set of benchmark experiments for evaluating dialogue response selection models.

Recently, deep neural networks have been widely adopted for end-to-end response selection modeling. The prior work generally
employed two encoders to map the conversation and the response into vector representations, and then designed a classifier to mea-
sure the relation between these two representations. An intuitive design is to encode two sequences separately via recurrent neural
networks (RNNs) and then compute a score between the last hidden state of two RNNs (Feng et al., 2015; Mueller and Thyagarajan,
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2016; Lowe et al., 2015). The MV-LSTM (Wan et al., 2015) improved the design by deriving a similarity matrix between outputs of
RNNs, and then used max-pooling and multi-layer perceptron (MLPs) to aggregate the similarity scores. To better utilize the interactive
information, other approaches employed the attention mechanism (Bahdanau et al., 2014) to facilitate the encoding
process (Rockt€aschel et al., 2016; Shen et al., 2017; Tan et al., 2015;Wang et al., 2016; Santos, Tan, Xiang, Zhou; Tay et al., 2018).

Motivated by the prior work that effectively utilized attention mechanisms in diverse ways, this paper proposes a novel
framework for dialogue response selection, called recurrent attention pooling networks (RAP-Net). The proposed model consists of
(1) a feature extractor which uses the architecture of multi-cast attention network (MCAN) (Tay et al., 2018) for extracting fea-
tures from input words, (2) feature-fusion layer for integrating domain-specific knowledge-grounded features and information
from the MCAN layer, and (3) a proposed dynamic pooling recurrent layer for extracting sentence-level information by pooling
dynamically based on utterance boundaries. The proposed model is shown to be effective for different datasets (Ubuntu, Advis-
ing) and different settings (subtask 1, 3, 4) in the DSTC7 experiments.
2. Task description

In the response selection challenge, given a partial conversation and a set of response candidates, the system is required to select
one response from the set of candidates. A partial conversation consists of l consecutive utterances U : fu1;u2; . . . ;ulg; where each
utterance is a sequence of words ui : fwU

i;0;w
U
i;1;w

U
i;2; . . . ;w

U
i;ni

g. We use special identifiers <speaker1> and <speaker2> to represent
the speaker identities, and the special identifier of the corresponding speaker is prepended to the beginning of the utterances. A candi-
date set consists of k candidates, denoted as X : fx1; x2; . . . ; xkg; where each candidate is a sequence of words xj : fwX

j;1;w
X
j;2; . . . ;w

X
j;mj

g.
For the course advising dataset, each dialogue comes with profiles of the participants, and we use this information to extract knowl-
edge-grounded features for each input word. The knowledge-grounded features of a wordw are denote as F(w). The extraction of F(w)
will be detailed in Section 4.3. Among the candidates, there will be either some correct responses or none. The labels indicating if the
candidate are correct answers are denoted as Y : fy1; y2; . . . ; ykg; yi 2 f0;1g.
3. RAP-Net: recurrent attention pooling networks

In this paper, we propose a novel framework, recurrent attention pooling networks (RAP-Net), for dialogue response selec-
tion, as illustrated in Fig. 1. The four-step pipeline is described as follows:

3.1. Multi-Cast Attention Network (MCAN)

The multi-cast attention network (MCAN) (Tay et al., 2018) aimed at extracting extra word features with various attention
mechanisms. We apply MCAN as an additional feature extractor. Here we concatenate context utterances d¼½u1;u2; . . . ;ul� as the
first sequence, while q¼xj as the sequence for the jth candidate. For all words in either d or q, the MCAN passes the word repre-
sentation into a highway layer H (Srivastava et al., 2015) to obtain a new representation w0:

w0¼HðwÞ¼sðWgwÞ � ReLUðWhwÞþ
�
1�sðWgwÞ

�
�w; ð1Þ

whereWg, Wh are parameters to learn, � denotes element-wise multiplication between vectors and s is the sigmoid function.
Then MCAN applies several attention mechanisms on two word sequences to capture the interaction between words, the

attention mechanisms include:
�
 Intra-attention aims to capture interaction of words in the same sequence. For a sequence d, a similarity matrix S is calculated
as

si;j¼w0Ti Mw0 j; ð2Þ
wherew0 i andw0j are representations of the ith and jth word of d respectively, andM is a learned transformmatrix. Forw0 j, the
attention are then used to compute a weighted sum over contexts to form a new representation:

w0intra¼
X
i

expðsi;jÞP
k expðsi;kÞ

w0i; ð3Þ
where the weights are computed by performing softmax operation over columns of the similarity matrix S, and the intra-
attention results for q are calculated similarly.
�
 Inter-attention aims to capture interaction between two word sequences. A similarity matrix S is calculated as

si;j¼w0Td;iMw0q;j; ð4Þ
where w0d;i and w0q;j are representations of the ith and jth word of d and q respectively. Three pooling mechanisms are utilized
to obtain different features from inter-attention results, as illustrated in Figs. 2 and 3 M is not shared across different pooling
mechanisms. The pooling functions include:



Fig. 1. The architecture of the whole proposed model. (A) is the word embedding of utterances (light green and light blue color denotes words spoken by differ-
ent speakers) and candidate (light red color). (B) is the MCAN. (C) Word embeddings along with extra features, which include knowledge grounded features (light
orange color) and features extracted by the MCAN (light yellow color). (D) is the first bi-directional LSTM layer. (E) is the dynamically pooling layer. Note that
LSTM outputs are grouped according to utterances. (F) is the second bi-directional LSTM layer. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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� max-pooling: the attention results are calculated as

w0max¼
softmax

�
maxcolðSÞ

�
Tq if w2 q

softmax
�
maxrowðSÞ

�
d if w2 d

8<
: ð5Þ

� mean-pooling: the attention results are calculated as

w0mean¼
softmax

�
meancolðSÞ

�
Tq if w2 q

softmax
�
meanrowðSÞ

�
d if w2 d

8<
: ð6Þ

� alignment-pooling: the attention results are calculated as

w0align¼

P
i

expðsi;jÞP
k expðsi;kÞ

w0d;i if w¼wq;j

P
j

expðsi;jÞP w0q;j if w¼wd;i

8>>><
>>>:

ð7Þ
k expðsk;jÞ
Finally, we can have a feature vector of twelve scalar features by interacting w0 with 4 attention results using 3 different com-
pression method: concatenation, subtraction and element-wise multiplication:



Fig. 2. Illustrator of inter-attention with mean and max pooling. The brown and violet color arrows are column-wise max and mean operation respectively. The
output vectors are the summation of utterances word embeddings weighted by the mean and max values. The dotted lines at the top of the figure denote that
the word embeddings (green and blue rounded rectangles) are weighted by the values (blue circles). Weighted summation of the candidate word vectors (pink
round corner rectangles) is omitted for simplicity here. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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fmcanðw0Þ¼½ W1½w0;w0align�; W2½w0align�w0�; W3½w0align �w0�; W4½w0;w0intra�;
W5½w0intra�w0�; W6½w0intra �w0�; W7½w0;w0mean�; W8½w0mean�w0�;
W9½w0mean �w0�; W10½w0;w0max�; W11½w0max�w0�; W12½w0max �w0�; �;

ð8Þ

whereWi are learned compression matrices that map a vector into a scalar, and [ ¢ ; ¢ ] denotes vector concatenation.
3.2. Word feature augmentation

In the second stage, each word w is augmented by concatenating the domain specific knowledge-grounded features F(w) and
features extracted by MCAN fmcan(w) after the word embeddings. The augmented representation of w is denoted as

~w¼½w; FðwÞ; fmcanðwÞ�: ð9Þ
3.3. Dynamic pooling recurrent networks

We propose dynamic pooling recurrent network which contains two layers of recurrent units and one dynamic pooling layer
between the two recurrent layers to encode contextual information. In our model, a first-level bi-directional LSTM LSTM1 is
employed (Hochreiter and Schmidhuber, 1997; Schuster and Paliwal, 1997), which focuses on encoding the utterance-level infor-
mation as hierarchical recurrent neural networks (HRED) does (Serban et al., 2016). The ith sequence (i¼1;2; . . . ; l) is encoded as

!
h1
i;t ;
!
c1i;t¼
!
LSTM

1ð ~wU
i;t�1;

!
h1
i;t�1;

!
c1i;tÞ; ð10Þ

 
h1
i;t ;
 
c1i;t¼
 
LSTM

1ð ~wU
i;tþ1;

 
h1
i;tþ1;

 
c1i;tÞ; ð11Þ



Fig. 3. Illustration of inter-attention with alignment pooling. The red arrows implies summation of the candidates (pink round corner rectangles) weighted by the
value of the column. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where h and c are the hidden states and cell states respectively. Different from HRED, which encodes each utterance separately,
the first layer of our dynamic pooling recurrent network encodes utterances by concatenating the utterances as a single
sequence. Therefore, the initial recurrent hidden state of an utterance is the last hidden state from the previously encoded utter-
ance:

!
h1
i;0;
!
c1i;t¼

!
h1
i�1;ni ;

!
c1i�1;ni ð12Þ

 
h1
i;0;
 
c1i;t¼

 
h1
iþ1;ni ;

 
c1iþ1;ni ð13Þ

In the second part of the dynamic pooling recurrent network, the dynamic pooling layer is used to generate one vector repre-
sentation ĥ1

i for each utterance ui by pooling dynamically based on the utterance length ni over the encoded hidden states from
the first bidirectional recurrent layer:

ĥ1
i ¼½maxð½!hi;1;

 
hi;1�; . . . ; ½

!
hi;ni ;

 
hi;ni �Þ;meanð½!hi;1;

 
hi;1�; . . . ; ½

!
hi;ni

;
 
hi;ni

�Þ�; ð14Þ
where max (.) and mean(.) denote the operations of max pooling and mean pooling of the vectors over dimensions. Finally, there
is another bi-directional LSTM layer, LSTM2, which encodes utterance-level representations:

!
h2
i ;
!
c2i ¼

!
LSTM2ðĥ1

i ; h
2
i�1; c

2
i�1Þ; ð15Þ

 
h2
i ;
 
c2i ¼

 
LSTM2ðĥ1

i ; h
2
iþ1; c

2
iþ1Þ; ð16Þ

and the last LSTM cell state is used as the dialogue-level representation:

rC¼½!c2l ;
 
c21�: ð17Þ
3.4. Candidate selection

Each candidate xj is encoded by the first LSTM layer in the dynamic pooling recurrent network, LSTM1:

!
hx
j;t ;
!
cxj;t¼

!
LSTM1ð ~wU

j;t�1;
!
hx
j;t�1;

!
cxj;tÞ; ð18Þ
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hx
j;t ;
 
cxj;t¼

 
LSTM1ð ~wU

j;tþ1;
 
hx
j;tþ1;

 
cxj;tÞ; ð19Þ

and both max pooling and mean pooling are applied over the outputs to get the candidate representation:

rXj ¼½maxð½!cxj;1;
 
cxj;1�; . . . ; ½

!
cxj;mj

;
 
cxj;mj

�Þ;meanð½!cxj;1;
 
cxj;1�; . . . ; ½

!
cxj;mj

;
 
cxj;mj

�Þ�: ð20Þ

Then the probability of the candidate xj being the correct response is calculated as

pðxjÞ¼s
�
H1

�
H2ð½rC ; rXj ; rC � rXj ; r

C�rXj �Þ
��

; ð21Þ

where H1, H2 are highway layers (Srivastava et al., 2015) with ReLU activation. The binary cross entropy function is utilized as the
objective:

LðU;X; YÞ¼
Xk
j¼1

yj logpðxjÞþð1�yjÞ log
�
1�pðxjÞ

�
: ð22Þ

4. Experiments

To evaluate the performance of the proposed RAP-Net, we conduct experiments on the two datasets provided by DSTC7-
Track1, and compare our results with two baseline systems.

4.1. Dataset

DSTC7-Track1 contains two goal-oriented dialogue datasets — (1) Ubuntu data and (2) Advising data. There are five subtasks
in this challenge, where this paper focuses on the subtask 1, 3 and 4, because the same model architecture can be applied to these
subtasks. Here we briefly describe the settings for each subtask:
�
 Subtask 1: There are 100 response candidates for each dialogue, and only one is correct.

�
 Subtask 3: There are 100 response candidates for each dialogue. The number of correct responses ranges from 1 to 5. Multiple
correct responses are generated using paraphrases.
�
 Subtask 4: There are 100 response candidates for each dialogue, and an additional candidate no answer should also be consid-
ered. The number of correct responses is either 0 or 1.
Note that although we discard subtask 5 which comes with external knowledge, i.e., Ubuntu manual pages, it is possible to
incorporate the provided information by learning domain-specific embeddings from it, which can be used as input to our model.

4.2. Baseline systems
�
 Dual Encoder (Lowe et al., 2015): uses two LSTMs with tied weights to encode the context d¼fu1;u2; . . . ;ulg and the response
x into fixed-length representations c, r, respectively. The final hidden state of LSTM is used to represent an input word
sequence. The probability of x being the next utterance of c is then calculated as

p¼sðcTMrþbÞ;
where the matrixM and bias b are learned parameters.

�
 HRED (Serban et al., 2016): has a similar structure as the Dual Encoder, but uses two LSTMs to encode context hierarchically.
Each utterance in the dialogue context is encoded separately by an utterance-level LSTM LSTM1. The encoded representations
are then fed into a conversation-level LSTM LSTM2 to produce the context representation c. A response x is encoded by LSTM1

into response representation r. The prediction is calculated similarly as the Dual Encoder above.

4.3. Experimental details

We use pre-trained 300-dimensional word embeddings via fasttext (Mikolov et al., 2018) to initialize the embedding matrix
and fix it during training. The word embeddings of out-of-vocabulary (OOV) are initialized randomly. In the advising dataset, the
suggested courses Csuggested and the prior courses Cprior of the student are given along with a conversation. Therefore, to explicitly
utilize this knowledge in our model, we extract two features for each word and then concatenate them as the knowledge-
grounded features, F(w):

F1ðwÞ¼ 1 if w2 Csuggested

0 otherwise:

(
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F2ðwÞ¼ 1 if w2 Cprior

0 otherwise:

(

FðwÞ¼½F1ðwÞ; F2ðwÞ�
Note that there is no additional knowledge provided for the Ubuntu dataset except for the subtask 5. Therefore, only fmcan(w) is
added to the word representations.

We use adam as our optimizer to minimize the training loss (Kingma and Ba, 2014). We utilize LSTM as the recurrent cell, and
the hidden layer size of LSTM is set to 128. The initial learning rate varies from 0.001 to 0.0001, which is a hyperparameter for
tuning. We train our models for 10 epochs and select the best-performing model based on the development set.

Following the official evaluation metrics, we use recall at 10 (R@10) andmean reciprocal rank (MRR) to report the performance
of our models. The final score is the average of two metrics.

4.4. Results

To explicitly validate the effectiveness of the proposed model and auxiliary features, we compare the performance between
our model and the baseline systems. Table 1 shows the empirical results on the development set of the subtask 1.

Dynamic pooling recurrent networks Rows (b) and (c) show that our dynamic pooling recurrent networks (DP-LSTM) outper-
forms HRED in terms of all metrics on both datasets, especially on the advising dataset. The results show that concatenating
utterances into a single sequence can benefit conversation encoding.

MCAN feature Adding fmcan(w) as an auxiliary feature (row (d)) further improves the performance by a large margin on the
Ubuntu dataset, yielding a 23.5% relative improvement. It demonstrates that MCAN feature also helps our model achieve better
results on the advising dataset.

Knowledge-grounded feature For advising dataset, we extract a 2-dimensional knowledge-grounded feature F(w) to enhance word
representations. As shown in Table 1, adding F(w) (row (e)) yields a 56.4% relative improvement, which is significantly greater than the
improvement of adding fmcan(w). The results show the difficulty of solving this task on the advising dataset without any prior knowl-
edge. The effectiveness of our knowledge-grounded feature F(w) shows that identifying course names is crucial for this dataset. The
best model on the advising dataset is the DP-LSTMwith bothMCAN and knowledge-grounded features added to the input word repre-
sentations (row (f)), achieving about 66% and 60% average performance for Ubuntu and advising datasets respectively.

4.5. Official evaluation

In the DSTC7 challenge, the proposed systems are submitted for official evalution. For each subtask, our submitted system
consists of several models with different hyperparameters and auxiliary features. Using different features gives our model multi-
ple perspectives to the data and hence improves the prediction accuracy. The official evaluation results are shown in Table 2. In
the official evaluation, the superior performance and the achieved rankings across different subtasks clearly demonstrate the
effectiveness of the proposed model. Considering that our rankings are either 2 or 3 among 20 teams, we argue that the proposed
RAP-Net can successfully estimate the relatedness between dialogues and responses and generalize across different datasets.

4.6. Ablation study

To further understand the contribution of each component, we conduct an ablation test on the RAP-Net model. Table 3 shows
the ablation results on the Ubuntu subtask 1 development set. We remove one component in a test and evaluate the resulting
model using R@10 and MRR. Note that after removing dynamic pooling, the last hidden state of an LSTM is used as the sequence-
level representation, so this setting is equivalent to HRED with an additional feature fmcan. We also ablate mean pooling and max
pooling from Eqs. (14) and (20) to verify their effectiveness.
Table 1
Results on subtask 1 development sets (%).

Ubuntu Advising

R@10 MRR Average R@10 MRR Average

Baseline (a) Dual Encoder 62.5 36.23 49.39 25.8 11.81 18.81
(b) HRED 65.2 37.87 51.56 39.2 18.68 28.94

RAP-Net (c) DP-LSTM 66.3 41.26 53.81 49.0 21.99 35.49
(d) DP-LSTM+fmcan 76.7 56.18 66.45 51.0 25.80 38.40
(e) DP-LSTM+F(w) � � � 72.9 38.07 55.50
(f) DP-LSTM+fmcanþFðwÞ � � � 76.6 42.84 59.72



Table 2
The official testing results of our submitted systems. Two different test sets for advising dataset are provided. Note
that in subtask 3, only advising dataset is provided for training and evaluating. The rankings of this challenge are
based on the average score.

Task Ubuntu Advising Case 1 Advising Case 2

R@10 MRR Avg Rank R@10 MRR Avg R@10 MRR Avg Rank

Subtask 1 81.0 64.86 72.93 3 80.4 49.14 64.77 61.0 30.61 45.81 2
Subtask 3 � � � � 68.4 39.34 53.87 60.4 31.71 46.05 3
Subtask 4 84.1 63.17 73.63 2 84.2 45.31 64.75 64.0 30.70 47.35 3

Table 3
Ablation results on Ubuntu development set (%).

Model R@10 MRR Average

DP-LSTM + fmcan 76.7 56.18 66.45
- inter-attention 69.4 43.92 56.66
- intra-attention 76.3 55.86 66.08
- highway encoder 75.8 54.94 65.37
- dynamic pooling 76.1 55.18 65.67
- mean pooling 75.8 55.02 65.40
- max pooling 76.1 54.99 65.54
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The ablation results show that the inter-attention is the most crucial component to our model, because the average score
drops drastically by almost 10% if it is removed, demonstrating the importance of modeling the interaction between the conver-
sation and the response for this task. It is found that removing highway encoder, dynamic pooling, mean pooling, or max pooling
results in a reduction of roughly 1% in terms of the average score, so they also contribute to the improvement slightly. Further-
more, the intra-attention benefits least to performance, which is similar to the findings in the prior work (Tay et al., 2018).
4.7. Attention analysis

As described in the previous section, the attention fmcan is a key feature in our framework. To deeply investigate this feature, we
examine its numerical value to perform qualitative analysis. An example of attention scores for each word in a sequence is shown in
Fig. 4. It can be found that the features extracted by mean-pooling, max-pooling and intra-attention are always equal or close to zero
Fig. 4. Visualization of attention scores. We plot the attention scores fmcan of two sequences from Ubuntu development set: (a) A partial conversation and (b) The
correct response corresponding to the conversation. The conversation is truncated to the last two sentences due to width limitation. Darker color represents
higher attention score. Note that each row is normalized separately since the range of values varies for each dimension.
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with no obvious pattern, so we only plot features extracted by alignment-pooling for simplicity. The x-axis indicates the words in the
context or response, and the y-axis represents different compressionmethods described in theMCAN section.

From Fig. 4, we observe that the attention has the ability to model word overlapping between two sequences. For example,
the word breezy appears in both sequences, and it has a relatively higher attention score. In addition to the ability to model
explicit word overlapping, MCAN can also identify words that are relevant to the other sequence. Here MCAN gives rhythmbox
and ipod larger scores than other words in the context, even though they do not appear in the response. The reason is that words
such as gtkpod and breezy in the response are related to ipod, so the model correctly identifies the words that are relevant in the
context. Similarly, the word gtkpod in the response obtains the highest attention score, because it is the most relevant to the con-
text.

The features extracted by multiplication and concatenation shows similar patterns. However, the features extracted by sub-
traction seems to be only activated by <speaker> and <unk> tokens or other function words. The probable reason is that this
dimension assists the encoder to recognize unimportant words. We should note that these observed patterns are not consistent
over different runs. Generally there is at least one dimension that models word relevance across sequences, and at least one
dimension that recognizes unimportant words.
5. Conclusions

This paper proposes a novel framework, recurrent attention pooling networks (RAP-Net), which focuses on precisely measur-
ing the relations between dialogue contexts and the responses for dialogue response selection. The DSTC7 experiments are con-
ducted to evaluate the proposed model, where multi-cast attention network (MCAN) and our proposed knowledge-grounded
features are proved to be useful, and each attention and pooling mechanism is demonstrated to be effective. In sum, RAP-Net is
capable of capturing the salient information from dialogues and is good at selecting a proper response for two different types of
dialogue data. In the future, the proposed model can be evaluated on other retrieval-based tasks to test the model capability of
generalization.
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