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ABSTRACT
Lattices are compact representations that encode multi-

ple hypotheses, such as speech recognition results or differ-
ent word segmentations. It is shown that encoding lattices
as opposed to 1-best results generated by automatic speech
recognizer (ASR) boosts the performance of spoken language
understanding (SLU). Recently, pre-trained language models
with the transformer architecture have achieved the state-of-
the-art results on natural language understanding, but their
ability of encoding lattices has not been explored. Therefore,
this paper aims at adapting pre-trained transformers to lattice
inputs in order to perform understanding tasks specifically for
spoken language. Our experiments on the benchmark ATIS
dataset show that fine-tuning pre-trained transformers with
lattice inputs yields clear improvement over fine-tuning with
1-best results. Further evaluation demonstrates the effective-
ness of our methods under different acoustic conditions1.

Index Terms— Transformer, lattice, spoken language un-
derstanding (SLU)

1. INTRODUCTION

Spoken language understanding (SLU) aims at parsing spo-
ken utterances into corresponding structured semantic con-
cepts. It plays an important role in spoken dialogue systems,
because the whole system may easily fail with the incorrect
SLU results. Typically, SLU includes intent detection and
slot prediction. For example, a movie-related utterance “find
comedies by James Cameron” has an intent find movie and
two slot-value pairs (genre, comedy) and (director, James
Cameron).

An SLU component is usually implemented in a pipeline
manner, where spoken utterances are first transcribed by an
automatic speech recognizer (ASR), then the transcripts are
parsed by a natural language understanding (NLU) system.
One drawback of this approach is that ASR systems may in-
troduce recognition errors, so the following NLU may not be
able to capture the correct semantic meaning given the tran-
scribed results. In addition, the incorrect understanding re-

1The code is available at https://github.com/MiuLab/
Lattice-SLU

sults from ASR errors may be propagated into later stages of
the dialogue system, resulting in undesired responses.

To mitigate this problem, previous work tried to design
tighter integration of ASR and NLU systems beyond 1-best
results. The prior work proposed to utilize word confusion
networks (WCNs) as input to NLU systems to preserve in-
formation in possible hypotheses [1, 2, 3, 4]. Yaman et al.
leveraged n-best lists with similar spirit [5]. With the re-
cent advance in deep learning methods for SLU [6, 7, 8, 9],
several solutions were proposed to tackle ASR errors. Ma-
sumura et al. examined spoken utterance classification using
WCNs with neural networks [10]. Inspired by earlier work
that extended recurrent neural networks (RNNs) to tree struc-
tures [11, 12, 13], Ladhak et al. proposed a generalized RNN,
LatticeRNN, that can process word lattices and achieve better
performance for SLU [14]. However, due to the inherently
sequential nature of RNNs, the training and inference speed
of LatticeRNN is dramatically slower than traditional RNNs.

Recently, language models trained with large generic cor-
pora have shown their ability to transfer knowledge from
language modeling to various classification tasks either by
providing contextualized features [15] or by fine-tuning pre-
trained weights on downstream tasks [16, 17]. Fine-tuning
a pre-trained transformer [18] language model with a small
amount of parameters yields state-of-the-art results on a va-
riety of language understanding tasks, such as sentiment
classification, textual entailment, and question answering.

Although pre-trained transformers have demonstrated
their effectiveness of classifying sequential inputs, it is not
clear whether they can encode uncertain inputs in the lat-
tice structure effectively. In this work, we aim at exploring
the ability of pre-trained transformers to encode and classify
lattice inputs. Specifically, our main contributions are 3-fold:
• This paper is the first attempt that extends the pre-

trained transformer models to take lattice inputs for the
spoken language understanding task.
• This paper conducts experiments on the benchmark

ATIS dataset [19, 20, 21] and demonstrates clear im-
provement over baselines using 1-best transcripts.
• This paper examines the effectiveness of the proposed

method under various acoustic conditions and shows
that our method yields consistent improvement.
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Fig. 1. A transformer encoder block

2. LANGUAGE MODEL PRE-TRAINING

Language model pre-training has achieved a great success
among language understanding tasks with different model
architectures. Because training language models requires a
large amount of text data, and it is relatively difficult to ac-
quire a lot of lattices, this work focuses on first pre-training
language models with the transformer architecture [18] and
then adapts the model to support lattice inputs. The pre-
training from natural language texts is described below.

2.1. Transformer Encoder

We first introduce the transformer encoder model [18], which
is the backbone model of our method. The transformer en-
coder is a stack of N transformer encoder blocks. The l-
th block takes a sequence of hidden representations X l =
{X l

1, · · · , X l
n} as the input and outputs an encoded sequence

X l+1 = {X l+1
1 , · · · , X l+1

n }. A transformer encoder block
consists of a multi-head self-attention layer and a position-
wise fully connected feed-forward layer. A residual connec-
tion [22] is employed around each of the two layers followed
by layer normalization [23]. An illustration of a transformer
encoder block is presented in Figure 1. The detailed compo-
nents are described as follows.

2.1.1. Positional Encoding

Because the transformer model relies on a self-attention
mechanism with no recurrence, the model is unaware of the
sequential order of inputs. To provide the model with po-
sitional information, positional encodings are applied to the
input token embeddings

X1
i = embedtoken[wi] + embedpos[i], (1)

wherewi denotes the i-th input token, embedtoken and embedpos
denote a learned token embedding matrix and a learned posi-
tional embedding matrix respectively.

2.1.2. Multi-Head Self-attention

An attention function can be described as mapping a query
to an output with a set of key-value pairs. The output is a
weighted sum of values. We denote queries, keys and values
as Q, K and V , respectively. Following the original imple-
mentation [18], a scaled dot-product attention is employed as
the attention function. Hence, the output can be calculated as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (2)

where dk denotes the dimension of key vectors.
The idea of multi-head attention is to compute multiple

independent attention heads in parallel, and then concatenate
the results and project again. The multi-head self-attention in
the l-th block can be calculated as

MultiHead(X l) = Concat(head1, · · · , headh)WO, (3)

headi = Attention(X lWQ
i , X

lWK
i , X lWV

i ), (4)

where X l denotes the input sequence of the l-th block, h de-
notes the number of heads, WQ

i , WK
i , WV

i and WO are pa-
rameter matrices.

2.1.3. Position-Wise Feed-Forward Layer

The second sublayer in a block is a position-wise feed-
forward layer, which is applied to each position separately
and independently. The output of this layer can be calculated
as

FFN(x) = max(0, x ·W1 + b1)W2 + b2, (5)

where W1 and W2 are parameter matrices, b1 and b2 are pa-
rameter biases.

2.1.4. Residual Connection and Layer Normalization

As shown in Figure 1, the residual connection is added around
the two sublayers followed by layer normalization. The out-
put of the l-th block can be calculated as

H l = LayerNorm(MultiHead(X l) +X l), (6)

X l+1 = LayerNorm(FFN(H l) +H l). (7)

2.2. Generative Pre-Training Model (GPT)

The generative pre-training (GPT) via a language model ob-
jective is shown to be effective for learning representations
that capture syntactic and semantic information without su-
pervision [15, 16, 17]. The GPT model proposed by Rad-
ford [16] employs the transformer encoder with 12 encoder
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Fig. 2. Illustration of the two-stage method in the GPT model.
<S> and <E> are special tokens introduced when fine-tuning.

blocks. It is pre-trained on a large generic corpus that covers
a wide range of topics. The training objective is to minimize
the negative log-likelihood:

L =

T∑
t=1

− logP (wt | w<t, θ), (8)

where wt denotes the t-th word in the sentence, w<t denotes
all words prior to wt, and θ is parameters of the transformer
model.

To avoid seeing the future contexts, a masked self-
attention is applied to the encoding process. In the masked
self-attention, the attention function is modified into

Attention(Q,K, V ) = softmax(
QKT

√
dk

+M)V, (9)

where M is a matrix representing masks. Mij = −∞ indi-
cates that the j-th token has no contribution to the output of
the i-th token, so it is essentially “masked out” when encod-
ing the i-th token. Therefore, by setting Mij = −∞ for all
j > i, we can calculate all outputs simultaneously without
looking at future contexts.

After the model is pre-trained with a language model
objective, it can be fine-tuned on downstream tasks with su-
pervised data. Given a sequence of input tokens w1, · · · , wm

along with label y, the inputs are passed through the pre-
trained encoder to obtain the output of the last token X12

m ,
which is then fed into a linear layer with parameters Wy

to make predictions. Note that the linear layer is added in
the fine-tuning stage. Figure 2 illustrates this two-stage ap-
proach. By fine-tuning on the target tasks, the GPT model
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Fig. 3. An example lattice representation. Numbers in blue
indicate the transition probabilities.

has achieved the state-of-the-art performance on various su-
pervised tasks including natural language inference, question
answering, semantic similarity and linguistic acceptability
[16].

3. ADAPTING PRE-TRAINED TRANSFORMER TO
LATTICES

As mentioned before, pre-training the language models from
large lattice data is difficult. Therefore, our approach focuses
on proposing an adaptation method that allows the pre-trained
transformer to take lattices as its input. A simple approach of
enabling the pre-trained transformers to consume lattice in-
puts is to flatten the lattice by its topological order and di-
rectly apply the sequential transformer model [24]. However,
this approach ignores the graph structure entirely, and the re-
sulting sequence may not form a meaningful sentence or may
even express the different meaning. Sperber et al. [24] in-
troduced lattice reachability masks and lattice positional en-
coding to encode lattices with self-attentional models. In the
following subsections, we define the lattices and describe how
we integrate the above techniques into the pre-trained trans-
former model in detail.

3.1. Lattices

Lattices represent multiple competing sequences in a com-
pact structure as directed acyclic graphs (DAGs). There is
one start node, labeled as <s>, and one end node, labeled as
</s>. Each node is labeled as a token. In our case, lattices
are outputs of ASR that store multiple decoded hypotheses
with uncertainty, and each path from the start node to the end
node indicates a possible hypothesis. An example lattice is
illustrated in Figure 3.

More formally, let G = (V,E) be a DAG with nodes V
and edges E. For a node v ∈ V , we denote the set of its
predecessors as Pre(v). For any pair of nodes vi and vj ,
P(vj ∈ Pre(vi) | vi) represents the conditional probability
that a path from start node to end node in G contains vj as a
predecessor of vi, given that vi appears in the path.



3.2. Lattice Reachability Masks

Recall that lattices store multiple hypotheses in a DAG. If we
perform self-attention with respect to all nodes in the lattice,
the information from different hypotheses may be mixed in
an undesired way, because the model is unaware of the global
structure of lattices due to the fact that it is pre-trained with
sequential data only.

Inspired by the concept about conditioning from TreeL-
STM [13] where each node is conditioned on its predecessors,
Sperber et al. proposed lattice reachability masks to prevent
the self-attention mechanism from attending to nodes that are
not predecessors of a given query node vi [24]. There are two
variants of masks:

• Binary masks restrict the self-attention mechanism to
only attend to the predecessors of the query node vi,
other nodes are masked:

M bin
ij =

{
0 vj ∈ Pre(vi) or vi = vj ,

−∞ otherwise.
(10)

• Probabilistic masks generalize the binary masks to a
probabilistic form. Binary masks ignore the uncertain-
ties in the lattice, so the model considers each node
equally disregarding their confidence scores. There-
fore, probabilistic masks are designed to bias the at-
tention toward the nodes with higher confidence:

Mprob
ij =


logP (vj ∈ Pre(vi) | vi) vj ∈ Pre(vi),
0 vi = vj ,

−∞ otherwise.
(11)

In the pre-training stage, a mask M is used to prevent the
tokens from attending to future contexts, where Mij = −∞
for all j > i. Notice that the masks M bin and Mprob de-
scribed above are strict generalization of M , considering that
the successors of the query node is always masked. In order
to leverage the information from lattices, this paper proposes
to extend the masked self-attention to

Attention(Q,K, V ) = softmax(
QKT

√
dk

+M lattice)V, (12)

where M lattice can be either M bin or Mprob. Therefore, the
signal about acoustic confidence from lattices provides addi-
tional cues for the model, and it may perform better for spo-
ken language tasks due to the lattice information.

3.3. Lattice Positional Encoding

Positional encoding is crucial for transformer models, since it
is the only source providing token ordering information. Nor-
mally, transformers use either learned or fixed embeddings
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Fig. 4. The illustration of the node-splitting method, where
the original node with the label Milwaukee is split into
nodes with tokenized labels.

for each position. When dealing with lattice inputs, determin-
ing the position of each lattice node is not straight-forward.
Sperber et al. [24] proposed to use the longest-path distance
from the start node as a node’s position, so the input of the
transformer model becomes

X1
i = embedtoken[wi] + embedpos[ldist(vi)], (13)

where ldist(vi) denotes the longest-path distance from the
start node to the node vi and wi is the label of vi.

This method that assigns the position to lattice nodes
brings several benefits: 1) positions of each lattice path are
strictly monotonically increasing, which complies with the
setting in pre-training, 2) unnecessary jump between neigh-
boring nodes are avoided, and 3) positions are no larger than
the length of the longest hypothesis, so the sequence lengths
do not differ much from that in pre-training.

The pre-trained GPT model uses byte-pair encoding to
split words into subword units. To follow this tokenization
scheme, we split a node in word lattice generated by ASR ac-
cording to the tokenization of its label. For instance, a node
labeled as Milwaukee is split into three nodes that are labeled
as Mil, wau, kee respectively. An example of this processing
method is shown in Figure 4. After node splitting, we as-
sign positions to the resulting lattice using the longest-path
distance method.

4. EXPERIMENTS

We conduct the experiments on a benchmark SLU task to ex-
amine the effectiveness of our method, where we fine-tune the
pre-trained transformer model with lattice inputs.

4.1. Setup

ATIS (Airline Travel Information Systems) [19, 20, 21] is
a widely used dataset for benchmarking SLU research. The
dataset contains audio recordings of people making flight
reservations or asking flight information with corresponding
manual transcripts. The training set contains 4,478 utterances



Table 1. F1-scores for multi-label classification and accuracy for utterance-level performance on ATIS (%).

Intent Slot
F-Measure Accuracy F-Measure Accuracy

Condition 1 (WER=15.5%)

1-Best Baseline 97.38 96.30 93.76 76.01
Lattice-Linearize 97.98 96.90 94.56 79.21
Lattice-Probabilistic 98.19 97.21 94.65 79.45
Lattice-Binary 98.23 97.15 94.65 79.93

Condition 2 (WER=26.3%)

1-Best Baseline 94.25 92.67 87.98 60.23
Lattice-Linearize 94.87 93.32 88.59 62.14
Lattice-Probabilistic 95.14 93.40 89.01 62.86
Lattice-Binary 95.25 93.50 89.09 63.43

Condition 3 (WER=38.7%)

1-Best Baseline 90.64 86.40 87.31 58.59
Lattice-Linearize 91.87 88.14 88.36 59.58
Lattice-Probabilistic 92.57 89.48 88.67 61.38
Lattice-Binary 92.39 89.06 88.66 60.98

Reference 98.90 98.08 95.96 87.14

and the test set contains 893 utterances. We treat both in-
tent detection and slot prediction as multi-label classification
problems, where slot prediction tries to predict what kind of
slots appear in an utterance. There are 81 slot labels and 18
intents in the training set.

Our ASR is trained on WSJ [25] using the s5 recipe
from Kaldi [26]. We use the ASR system to recognize au-
dio recordings in ATIS training set and extract lattices for
fine-tuning. To simulate different acoustic conditions, we
artificially corrupt the recordings with additive noises from
MUSAN corpus [27] and simulated room impulse response
[28, 29]. As a result, we have three copies of the dataset:
• Condition 1: The original dataset. The word error rate

(WER) of the ASR results is 15.55% in the test set.
• Condition 2: A mildly corrupted version of the original

dataset. The WER is 26.30% in the test set.
• Condition 3: A severely corrupted version of the origi-

nal dataset. The WER is 38.69% in the test set.

4.2. Model and Training Details

The pre-trained weights of GPT from the original paper are
adopted [16]. A linear classifier is placed on top of the outputs
of transformers, and we use the output of the last token for
prediction.

When fine-tuning GPT, we set the batch size to 8 and use
Adam as the optimizer [30] with learning rate 6.25 · 10−5.
A linear warm-up schedule is adopted and the whole model
is fine-tuned for 5 epochs. We train intent detection and slot
prediction models separately.

4.3. Results

Table 1 presents the results of intent detection and slot predic-
tion under three acoustic conditions. For each number in the

table, we perform ten runs with different random seeds and
calculate the average after discarding the best and the worst
runs. In each condition, we compare our methods with two
baseline systems: 1-best that takes 1-best transcripts as the
input and lattice-linearize that takes lattices linearized with
topological order.

The results show that fine-tuning pre-trained transform-
ers with lattices significantly outperforms 1-best baseline on
both tasks, yielding 32.4%, 15.4% and 20.6% relative error
reduction under different acoustic conditions. The two vari-
ants of masks perform similarly across acoustic conditions.
These results demonstrate that fine-tuning pre-trained trans-
formers with lattices yields clear and consistent improvement
for SLU.

In addition, using linearized lattices also improves the per-
formance over the 1-best baseline. This is probably that ATIS
is relatively simple, where keywords play an important role
for understanding. Therefore, even though the linearized lat-
tices do not form meaningful sentences, they still provide the
model with more possible words and achieve the improved
performance. Nevertheless, the best performance in the ex-
periments comes from our proposed methods.

5. DISCUSSION AND ANALYSIS

We investigate the sample efficiency and ASR impact of our
model and perform qualitative analysis here.

5.1. Sample Efficiency

Although lattices provide richer information than 1-best tran-
scripts so the model can reach better performance, it is possi-
ble that the model requires more examples to learn the proper
mapping between utterances and labels due to the noisy input



Table 2. A testing sample in the condition 3.

Input SLU Result
Reference how far is new york ’s la guardia from downtown distance
ASR 1-best how for is new york ’s la guardia from downtown None

ASR Lattice
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Fig. 5. F1 with respect to size of training data.

lattices. We conduct experiments with different numbers of
training examples to test the sample efficiency of fine-tuning
with lattices. We sample n examples randomly from the orig-
inal training set and use this reduced set to fine-tune our mod-
els. All examples are drawn from the condition 3.

Figure 5 plots the results, where fine-tuning with lattices
consistently outperforms the 1-best baseline by 2% while the
number of training examples varies from 300 to 5000, indicat-
ing that our method does not require more training examples
to achieve such improvement.

5.2. Impact of Transcription Quality

We analyze the SLU performance with respect to WER of
ASR. We group the utterances according to their utterance-
level WER and present the performance of each group in
Figure 6. Aligning with our intuition, using 1-best re-
sults achieves slightly better performance when lower WER
(<15%). In all other cases, using lattices as inputs outper-
forms using 1-best, demonstrating that our model is especially
suitable for the scenarios with poor ASR results.
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Fig. 6. F1 with respect to utterance-level word error rates.

5.3. Qualitative Analysis

In order to further analyze how lattices help SLU, we sam-
ple an example from the test set of the condition 3 shown in
Table 2. In this example, the ASR misrecognizes far as for,
so the SLU is unable to understand the intention behind this
utterance. It is clear that the correct word, far, is in the lattice,
so SLU is able to correctly understand that the user is asking
about the distance, even though far has the lowest probability
among alternatives. It justifies the effectiveness of our model.

6. CONCLUSION

This paper extends the pre-trained transformer to lattice in-
puts in order to perform understanding on lattices generated
by ASR systems. We leverage lattice reachability masks and
lattice positional encoding into the pre-trained transformer
model, enabling it to consume lattice inputs during fine-
tuning. The experiments on benchmark SLU data demon-
strate the effectiveness of our methods under various acoustic
conditions2.

2This work was financially supported from the Young Scholar Fellowship
Program by MOST in Taiwan, under Grant 108-2636-E002-003.
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