
DIALOGUE ENVIRONMENTS ARE DIFFERENT FROM GAMES:
INVESTIGATING VARIANTS OF DEEP Q-NETWORKS FOR DIALOGUE POLICY

Yu-An Wang and Yun-Nung Chen

National Taiwan University, Taipei, Taiwan
b04902004@csie.ntu.edu.tw y.v.chen@ieee.org

ABSTRACT

The dialogue manager is an important component in a task-oriented
dialogue system, which focuses on deciding dialogue policy given
the dialogue state in order to fulfill the user goal. Learning dialogue
policy is usually framed as a reinforcement learning (RL) problem,
where the objective is to maximize the reward indicating whether
the conversation is successful and how efficient it is. However, even
there are many variants of deep Q-networks (DQN) achieving bet-
ter performance on game playing scenarios, no prior work analyzed
the performance of dialogue policy learning using these improved
versions. Considering that dialogue interactions differ a lot from
game playing, this paper investigates variants of DQN models to-
gether with different exploration strategies in a benchmark exper-
imental setup, and then we examine which RL methods are more
suitable for task-completion dialogue policy learning1.

Index Terms— dialogue policy, reinforcement learning, deep
Q-Networks, exploration

1. INTRODUCTION

Dialogue systems are a very popular topic in natural language pro-
cessing (NLP) field in recent years. A task-completion dialogue sys-
tem is usually built by three main modules: natural language un-
derstanding (NLU), dialogue manager (DM), and natural language
generation (NLG). Each module can be built disjointly or trained
in an end-to-end fashion [1]. The goal of a dialogue manager is to
learn the dialogue policy, which can be viewed as a partially observ-
able Markov decision process (POMDP), and often formulated as a
reinforcement learning (RL) problem. [2–5]

One of the most successful RL algorithms is deep Q-networks
(DQN) [6], which is widely used in many sequential decision-
making problems, such as game playing [7, 8]. Numerous exten-
sions of DQN have further been proposed, such as Double DQN [9]
and Dueling DQN [10], which are simply modified from nature
DQN and shown better in some tasks. Prioritized DQN uses a
prioritized experience replay [11] to improve data efficiency. Dis-
tributional Q-learning [12], also known as categorical DQN, is an
alternative solution to model the value function of value-based RL.
Rainbow [13] integrates many variants of DQN and was performed
on Atari 2600 games. However, the results showed that not all
extensions of DQN improve performance on all tasks. Hence, this
paper focuses on investigating which type of DQN fits better with
the task about dialogue policy learning and discusses the potential
direction for future work.

1The code is available at https://github.com/MiuLab/
DialogDQN-Variants

State
Tracking

Dialogue
Policy

Learning

Dialogue
Management

Database

Natural
Language

Understanding

Natural
Language

Generation

Fig. 1: Illustration of a neural dialogue system framework.

In RL algorithms, the exploration strategy focuses on encourag-
ing the model to choose diverse actions in order to discover poten-
tially good paths, which plays an important role in the performance.
The conventional DQN often uses ε-greedy [14] and entropy regu-
larization [15] as its exploration strategy. Another general approach
is the noisy network [16], which directly adds parametric noise in
the hidden layers of a network.

In addition to extensions of DQN, model-based RL has recently
drawn some attention for solving RL problems. The prior work
about dialogue policy learning designed model-based methods with
domain knowledge about dialogues [17, 18], which achieved im-
proved performance due to better interactive scenarios. Furthermore,
more general model-based methods that are not restricted to dialogue
policy perform extraordinarily in most RL problems. For instance,
curiosity-based exploration [19, 20] is a general model-based explo-
ration that can be applied to dialogue policy learning and performs
better than conventional exploration strategies such as ε-greedy.

Even though there are many extensions of RL algorithms, there
is no prior work that investigates such variants in the dialogue area.
Therefore, this paper compares variants of DQN and different explo-
ration strategies in order to discuss which algorithms are the most
suitable for task-completion dialogue policy.

2. NEURAL DIALOGUE SYSTEM FRAMEWORK

The framework is illustrated in Figure 1 [1]. In a neural dialogue
system, an input sentence (recognized utterance or text input) passes
through a natural language understanding (NLU) module and be-
comes a corresponding semantic frame, and a dialogue manager
(DM), which includes a state tracker and policy learner, is to ac-
cumulate the semantics from each utterance, robustly tracks the dia-
logue states during the conversation, and generates the next system
action. This paper focuses on different reinforcement learning vari-
ants for modeling DM. Therefore, we detail the notation formulation
of components within DM below.

https://github.com/MiuLab/DialogDQN-Variants
https://github.com/MiuLab/DialogDQN-Variants

state = {
’user_action’: {’diaact’: ’request’, ...},
’agent_action’: {’diaact’: ’request’, ...},
’current_slots’: {’inform_slots’: {}, ...},
’kb_results’: {’slot’: ’value’, ...},
’history’: [...],
’turn’: 2
}

Fig. 2: Dialogue state representation.

2.1. Dialogue State Tracking

Given the symbolic semantics outputted by NLU, such as “request(
moviename; genre=action; date=this weekend)”,
three major functions are performed by the state tracker:

1. A symbolic query is formed to interact with the database to
retrieve the available results.

2. The state tracker will be updated based on the available results
from the database and the latest user dialogue action.

3. The state tracker will prepare the state representation for pol-
icy learning.

In practice, the dialogue state can be represented as a dictio-
nary. The format is presented in Figure 2. user action and
agent action indicate the semantic dialogue action of the user
and the agent respectively. current slots includes slots that
have been informed or requested so far. kb result includes avail-
able slot values retrieved from the database, and history is a list
containing all history actions. If deep RL is applied to dialogue pol-
icy learning, this state representation will be transformed into a vec-
tor s by encoding every dictionary value into one-hot or n-hot rep-
resentations.

2.2. Dialogue Policy Learning

The state representation s for the policy learning includes the latest
user action (e.g., request(moviename; genre=action;
date=this weekend)), the latest agent action (request(
location)), the available database results, turn information, and
history dialogue turns, etc. By conditioning on the state representa-
tion s from the state tracker, the policy π is to generate the next
available system action a = π(s). Either supervised learning or
reinforcement learning can be used to optimize the policy π. This
paper focuses on investigating variants of RL-based policy learning
detailed in Section 3, where all RL approaches are based on DQN
and policy-based RL models are not considered.

3. VARIANTS OF DEEP-Q-NETWORKS

The basic idea of DQN [6] is to learn an optimal Q-value function
obeying a Bellman equation:

Q∗(s, a) = Es′ [r + γQ∗(s′, a′) | s′, a′], (1)

where (s, a) is a state-action pair in the current step, and (s′, a′) is
the pair of the next step.

At each step, the agent takes the state s as its input and evaluates
the expected return values of each possible action a, greedily se-
lects the action with the maximum value, then receives the next state
s′ and the reward r from the environment. In the training phase,
the agent stores the transition tuple (s, a, s′, r) in a replay memory

buffer. The Q-value function is approximated by a neural network
with parameters θ and optimized by mean square error (MSE) loss,

Lθ = E[(r + γmax
a′

Q(s′, a′, θ′)−Q(s, a, θ))2], (2)

where θ′ denotes parameters of the target network, and γ is a tun-
able discount factor. The training tuple is randomly selected from
the replay buffer, and the objective can be optimized by gradient
descent. Due to the limitation of nature DQN, different variants of
DQN and exploration strategies were proposed. We briefly summer-
ize the variants below.

3.1. Double DQN

Double DQN [9] tries to solve the problem about the overestimated
bias in the conventional DQN, where the model decouples selection
and evaluation in DQN and rewrites the objective as

Lθ = E[(r+γQ(s′, arg max
a′

Q(s′, a′, θ), θ′)−Q(s, a, θ))2]. (3)

The change is to reduce the overestimation in Q-learning.

3.2. Dueling DQN

Dueling DQN [10] splits Q-networks into two separate estimators,
advantage function A(s, a) and value function V (s), and factorizes
the Q-function into the following form:

Q(s, a) = A(s, a) + V (s)− 1

Nactions

∑
i

A(s, ai). (4)

It claims that the values can be estimated more accurate.

3.3. Distributional DQN

Distributional RL learns the distribution of returns instead of ex-
pected values. Bellemare et al. [12] proposed categorical DQN
to model the value distribution by a set of atoms {zi = Vmin +
i(Vmax−Vmin

N−1
) | 0 ≤ i ≤ N}, then approximate the probability

mass of each atom piθ(s, a). The approximated distributional value
function can be denoted by

Zθ(s, a) = zi w.p. piθ(s, a) =

∑
exp(θi(s, a))∑
j exp(θj(s, a))

. (5)

To learn a discrete distribution as the target, we project the sampled
target distribution onto the discrete support of Zθ to derive the con-
tinuous distribution to multiclass classification, and then minimize
the Kullbeck-Leibler divergence

L(θ) = DKL(ΦT̂ Zθ′(s, a) ‖ Zθ(s, a)), (6)

where T̂ Zθ is the sampled Bellman update, so the distributional
value function can be obtained.

3.4. Noisy Network

NoisyNet [16] is an exploration strategy aiming at inducing stochas-
ticity of the agent’s policy, which can be utilized in any deep RL al-
gorithm. NoisyNet simply adds parametric noise in the linear layer
of neural models.

y = (µw + σw � εw) · x+ (µb + σb � εb), (7)

Intrinsic
Curiosity
Module

𝑎𝑡
Ƹ𝑠𝑡+1

Policy

User
Simulator

Dialogue
Manager

User Action

Agent

Fig. 3: Intrinsic curiosity module (ICM) in the dialogue system.
ICM takes the current state and the action as its input for predict-
ing the next state, and then calculates the intrinsic reward by mean
square error.

where � indicates the element-wise product, µ and σ are trainable
parameters, and ε is the random noise. NoisyNet can be viewed as a
normal linear layer y = w ·x+ b by combining µw +σw� εw = w
and µb+σb�εb = b. The agent is encouraged to act more randomly
and explore more unvisited states with this special network.

3.5. Curiosity-Based Exploration

Curiosity-based exploration is motivated by human infants, who of-
ten tend to explore novel things in the environment. Pathak et al. [19]
proposed a curiosity-based algorithm, which determines how novel
the state is by predicting the next environment state, and then guide
the exploration based on the curiosity.

Figure 3 illustrates how to apply this technique to the dialogue
system framework. The agent shown in the block contains two mod-
ules, one for the policy that takes an action at to reply to the user
and one for an additional intrinsic curiosity module (ICM) that fo-
cuses on predicting the next state. Then we can obtain the extrinsic
next state st+1 and the reward ret from the dialogue manager. ICM
takes at and st as its input and predicts ŝt+1, which can be opti-
mized in a supervised manner. We can calculate mean square error
rit = (st+1 − ŝt+1)2 as the intrinsic curiosity reward, so the final
reward for RL training would be rt = rit + ret .

In practice, we normalize the intrinsic rewards to µ = 0 and
σ = 1 before adding to final rewards. Because ICM would not
converge to zero loss, this trick can reduce unnecessary bias caused
by intrinsic rewards.

3.6. Prioritized Experience Replay

Off-policy RL algorithms store experience transitions in a replay
memory [21] and reuse the experiences to improve data efficiency.
Conventional DQN samples transitions from the replay memory uni-
formly. However, prioritized experience replay [11] assigns each
transition a priority according to the last encountered absolute TD
error:

pi = |r + γmax
a′i

Q(s′i, a
′
i, θ
′)−Q(si, ai, θ)|α, (8)

and samples from the replay with a multinomial distribution P (i) =
pi∑
j pj

, where α is a hyperparameter that determines the shape of

Table 1: Number of intents, slots and dialogues in three dataset.

Task Intents Slots Dialogues
Movie-Ticket Booking 11 29 2890
Restaurant Reservation 11 30 4103

Taxi Ordering 11 29 3094

distribution. Theoretically, transitions with higher TD error are more
valuable for agent training, so applying a prioritized replay can fur-
ther improve data efficiency.

This paper focuses on applying the above variants of DQN to
goal-oriented dialogue system scenarios and investigates the perfor-
mance difference and the suitability of each model.

4. EXPERIMENTS

In order to evaluate the performance of RL agents in dialogue sce-
narios, we conduct the experiments by only manipulating dialogue
policy learning algorithms.

4.1. Benchmark Dialogue System Data

We use the benchmark task-completion dialogue environments pro-
vided by Microsoft Dialogue Challenge [22, 23]. The environments
include pre-trained NLU and NLG models and rule-based user sim-
ulators, so the experiments are conducted by only switching the dia-
logue policy for fair comparison.

The experiments are performed in three domains: movie-ticket
booking, restaurant reservation and taxi ordering. Each domain
has its domain-specific intents and slots, and the statistics is shown
in Table 1. The goal of each agent is to interact with the user in order
to help them achieve specific goals.

4.2. Setup

All model for RL agents are 2-layers perceptrons with hidden sizes
of 80, and optimized by RMSprop with 0.001 learning rate. The
size of experience replay is 10,000. The target network of DQN
uses an exponentially moving average soft-update with τ = 0.01. ε
annealing is employed in ε-greedy, and ε starts from 0.2 and decays
every episode with a decay rate of 0.95. In distributional DQN, we
set Natoms = 51 (C51 Algorithm), which is the best setting in the
original paper, and min/max values are −40 and 80. All learning
curves in the results are the average values with 5 different random
seeds, and the colored areas between curves are 0.5 times standard
deviation in each episode.

A reward function is required for training RL policy. In this task,
the agent receives 2 · turnsmax reward when a dialogue successes
and −turnsmax when it fails. To encourage the policy to reach
the goal more efficiently, the agent receives −1 penalty every turn.
In other words, more turns the agent spends achieving the goal, a
lower reward it would get. turnsmax is set to 40 in the movie-ticket
booking domain and 30 in the other two domains.

4.3. Analysis of Different DQN Algorithms

Figure 4 shows the learning curves of 5 variants of DQN in three
domains. The curves in the first row plot the success rate over simu-
lation epoch, and the second row plot the average turns.

Fig. 4: Learning curves of variants of DQN in three domains. Dueling DQN and Distributional DQN are more stable, especially Dueling
perform best. Double DQN only improve a little, and prioritized DQN fails in all tasks.

4.3.1. Double DQN

Previous work [13] has experimented these variants of DQN on
many of Atari games. Their results show that Double DQN im-
proves very little in most environments, and even harms the perfor-
mance sometimes. Thus, we examine how this component affects
task-completion dialogue policy.

In this task, Double DQN performs better in restaurant and taxi
domains, while it seems not to affect significantly in the movie do-
main. We observe that both conventional DQN and Double DQN
have very high standard deviations of success rate and average turns,
because some training processes among 5 random seeds got very
poor results, where their success rate is close to 0%. This issue does
not come from bad random seeds, because increasing the number of
random seeds does not help. Hence, the higher standard deviation
tells that both DQN and Double DQN are unstable algorithms in this
task.

To further analyze the results, we plot the error histogram of the
predicted returns for both DQN and Double DQN in Figure 5, and
then find that predicted returns of Double DQN only higher about
2 than DQN in average, and the predicted returns of conventional
DQN is already very close to actual returns in most dialogue turns.
Therefore, we can conclude that DQN does not suffer a lot from
the problem of overestimation in this task, so the improvement of
Double DQN is limited.

4.3.2. Dueling DQN

From Figure 4, Dueling DQN performs best over all other algo-
rithms in three domains. Its performance is very close to Distribu-
tional DQN in the movie-ticket domain and outperforms all others
in restaurant reservation and taxi ordering. In addition, we observe
that Dueling DQN has more stable training processes than DQN and
Double DQN, where the standard deviation of both success rate and
average turns is much lower. Moreover, it also converges to a better

Fig. 5: Histogram of the difference between actual and predicted
returns for DQN and Double DQN. We sample transitions from 300
dialogue episodes, then count the error in every interval of 2.

optimal than the other. It seems that the network design of conven-
tional DQN cannot model the Q-function perfectly, while Dueling
DQN considering a extra value function can perform better in a dia-
logue system. According to the above results, we consider Dueling
DQN an appropriate algorithm for this task.

4.3.3. Distributional DQN

Utilizing a distributional value function hugely affects the perfor-
mance of this task. Distributional DQN also produces more stable
training processes than DQN and Double DQN, but its success rate
and average turns are slightly worse than Dueling DQN. We find that
it has lower standard deviation than Dueling DQN in restaurant and
taxi domains. The original Distributional DQN [12] claimed that the
distributional value function can reduce chattering, leading to insta-
bility in Bellman optimality operator. By reducing chattering, the
policy can converge more stable and produce less standard deviation

Fig. 6: Learning curves of different exploration strategies in three domains

in different random seeds. The results imply that the contribution of
the distributional value function is orthogonal to Dueling DQN.

4.3.4. Prioritized DQN

DQN with a prioritized experience replay fails to learn the good pol-
icy and gets 0% success rate in all domains. Here the Bellman error
in DQN with the prioritized experience replay would converge very
soon then gets stuck in a local minimum. Tuning the hyperparam-
eter α lower in prioritized experience replay may make it sample
transitions more uniformly, but it still fails. Hence, the experimental
results tell that prioritized DQN is not suitable for our target envi-
ronments.

4.4. Comparison of Exploration Strategies

We compare four exploration strategies on DQN: ε-greedy, NoisyNet,
curiosity-based and no strategy. The results are shown in Figure 6.

4.4.1. Curiosity-based Exploration

In task-completion dialogues, the agent can get positive rewards only
when reaching the goal. That means, the agent cannot receive any
reward if it makes a wrong decision leading to failure, even though
it acts perfectly before. Once the agent makes too many wrong de-
cisions in early training time, the policy may easily get stuck in a
local minimum where the agent cannot get any positive reward. In
contrast, curiosity-based exploration can always produce meaningful
gradient by the dynamic intrinsic rewards to escape the local mini-
mum.

We plot the curves of intrinsic and extrinsic rewards during the
training processes in Figure 7. The standard deviation of rewards
is higher in early training episodes, because the agent sometimes
get stuck in a local minimum, but the intrinsic reward can always
help the agent to escape. In conclusion, curiosity exploration does

Fig. 7: The rewards of curiosity-based exploration, where intrinsic
rewards and extrinsic rewards converge at the same time.

not suffer from the local minimum issue, so it is more suitable for
dialogue policy learning scenarios.

4.4.2. Noisy Network

Noisy Network actually improves DQN and beats the other three
strategies in movie and taxi domains. However, the performance
is very poor in the restaurant domain. Considering that the im-
provement of curiosity-based is subtle in the restaurant domain, we
hypothesize that this domain may not need an efficient exploration
strategy. Compare with movie-ticket booking, this domain has a
much lower average success rate, but the average turns are also
lower. That means that it has less tolerant of wrong actions, and
the agent cannot take too many unnecessary explorations, especially
just adding noise to make the agent act more randomly.

4.4.3. ε-greedy

ε-greedy fails for policy learning in all domains. Prior results tell that
just letting the agent act randomly is not appropriate in every task. In

contrast to Noisy Network, ε-greedy does not learn with parametric
noise, but samples random action directly. This makes the agent
harder to reach the successful dialogues, and the agent easily gets
stuck in a local minimum.

4.5. Effectiveness of Additity

In our task, simply integrating all DQN algorithms do not perform
better. To further analyze the effectiveness of each algorithm and
whether they can be additive, we integrate different DQN algorithms
and see whether the performance is further improved. We test on the
combination of Dueling DQN with other four algorithms considering
that Dueling DQN performs best in the previous experiments. We
conduct the effectiveness test on movie-ticket booking and restau-
rant reservation domains. However, we find that combining other
algorithms with Dueling DQN affect very little, and cannot observe
any important finding in movie-ticket booking domain. Thus, we
only plot the result of the restaurant reservation domain in Figure 8
for analysis.

4.5.1. Combining with Different Variants of DQN

Figure 8a shows the learning curves of Dueling DQN combined with
other variants of DQN. We observe that applying Double Q-learning
gives a negative effect on Dueling DQN. In Sec. 4.3.1, we have illus-
trated that Double DQN affects slightly, since DQN does not signif-
icantly overestimate the Q-function in this task. On the other hand,
the Q-function can be estimated more precisely with Dueling DQN;
therefore Double DQN can even allow Dueling DQN to underesti-
mate the Q-function, and further leads to a worse result. In term
of the distributional value function, it actually reduces the standard
deviation of success rate but performs worse in average. It seems
that although it has an orthogonal improvement to Dueling DQN,
it harms the optimal policy with dueling network in this task. Last
but not least, we observe that prioritized experience replay still fails
with Dueling DQN, aligning with the conclusion we have discussed
in Sec. 4.3.4.

4.5.2. Combining with Different Exploration Strategies

We also combine Dueling DQN with different exploration strategies
shown in Figure 8b. Surprisingly, all exploration strategies perform
worse than Dueling DQN without any strategy. Furthermore, this
only happens in the restaurant reservation domain. In the movie do-
main, except for Noisy Network which also causes a poor result with
Dueling DQN, other two exploration strategies take almost no ef-
fect on Dueling DQN. This finding corresponds to the conclusion in
Sec. 4.4 saying that the restaurant reservation domain does not need
too many exploration actions. Another finding is that ε-greedy which
fails on conventional DQN in all domains, but works with Dueling
DQN.

4.6. Human Evaluation

To evaluate the system performance from a human perspective, we
participate the Microsoft Dialogue Challenge and submit a Double
Dueling DQN agent for human evaluation2. The results are shown
in Table 2, where the DQN and rule-based agents are the baselines
provided by the challenge. It is obvious that the Double Dueling
DQN agent achieves better success rate and receives slightly better

2Dueling DQN, the best model from the above experiments, is not sub-
mitted for human evaluation during the competition.

(a) Combining with other DQN variants.

(b) Combining with exploration stratigies.

Fig. 8: Effectiveness test results in the restaurant reservation domain.

Table 2: Human evaluation results.

Agent Success Rate (%) Rating (0-5)

Rule-based 6.42 1.78
DQN 30.8 2.62
Double Dueling DQN 31.1 2.65

average ratings from the human perspective. The results also demon-
strate that Double Dueling DQN is suitable for dialogue systems.

5. CONCLUSION

This paper investigates several variants of DQN applied to goal-
oriented dialogue settings, and finds which extension of DQN is suit-
able for the target scenarios. Among variants of DQN, Dueling DQN
and Distributional DQN improve significantly in our benchmark ex-
periments. However, they are not additive. In term of exploration
strategies, the experiments show that curiosity-based exploration and
NoisyNet improve DQN in most settings of dialogue policy learning.
The investigation and analysis from this paper guide the future direc-
tions of applying value-based RL for dialogue policy learning. We
also found that some common improvement of RL algorithms such
as double DQN, ε-greedy, do not help dialogue policy learning due
to the property difference between dialogues and other RL environ-
ments such as Atari games. As a result, we conclude that although
it is not naive to choose the best RL algorithm for a specific task,
analyzing the characteristics of the task helps choose a suitable al-
gorithm3.

3This work was financially supported from the Young Scholar Fellowship
Program by MOST in Taiwan, under Grant 108-2636-E002-003

6. REFERENCES

[1] Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao, and
Asli Celikyilmaz, “End-to-end task-completion neural dia-
logue systems,” in Proceedings of the Eighth International
Joint Conference on Natural Language Processing (Volume 1:
Long Papers), 2017, vol. 1, pp. 733–743.

[2] Steve Young, Milica Gašić, Blaise Thomson, and Jason D
Williams, “Pomdp-based statistical spoken dialog systems: A
review,” Proceedings of the IEEE, vol. 101, no. 5, pp. 1160–
1179, 2013.

[3] Jason D Williams and Steve Young, “Partially observable
markov decision processes for spoken dialog systems,” Com-
puter Speech & Language, vol. 21, no. 2, pp. 393–422, 2007.

[4] James Henderson, Oliver Lemon, and Kallirroi Georgila, “Hy-
brid reinforcement/supervised learning for dialogue policies
from communicator data,” in IJCAI workshop on knowledge
and reasoning in practical dialogue systems. Citeseer, 2005,
pp. 68–75.

[5] Milica Gašić and Steve Young, “Gaussian processes for
pomdp-based dialogue manager optimization,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol.
22, no. 1, pp. 28–40, 2014.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A
Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Mar-
tin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.,
“Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529, 2015.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Ried-
miller, “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[8] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484, 2016.

[9] Hado Van Hasselt, Arthur Guez, and David Silver, “Deep rein-
forcement learning with double q-learning.,” in AAAI. Phoenix,
AZ, 2016, vol. 2, p. 5.

[10] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt,
Marc Lanctot, and Nando De Freitas, “Dueling network ar-
chitectures for deep reinforcement learning,” arXiv preprint
arXiv:1511.06581, 2015.

[11] Tom Schaul, John Quan, Ioannis Antonoglou, and David
Silver, “Prioritized experience replay,” arXiv preprint
arXiv:1511.05952, 2015.

[12] Marc G Bellemare, Will Dabney, and Rémi Munos, “A distri-
butional perspective on reinforcement learning,” arXiv preprint
arXiv:1707.06887, 2017.

[13] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom
Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot,
Mohammad Azar, and David Silver, “Rainbow: Combining
improvements in deep reinforcement learning,” 2017.

[14] Richard S Sutton and Andrew G Barto, Introduction to rein-
forcement learning, vol. 135, MIT press Cambridge, 1998.

[15] Ronald J Williams, “Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning,” Machine
learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[16] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Ja-
cob Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi
Munos, Demis Hassabis, Olivier Pietquin, et al., “Noisy
networks for exploration,” arXiv preprint arXiv:1706.10295,
2017.

[17] Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, and Kam-
Fai Wong, “Deep dyna-q: Integrating planning for task-
completion dialogue policy learning,” in Proceedings of the
56th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), 2018, vol. 1, pp. 2182–2192.

[18] Shang-Yu Su, Xiujun Li, Jianfeng Gao, Jingjing Liu, and Yun-
Nung Chen, “Discriminative deep dyna-q: Robust planning for
dialogue policy learning,” arXiv preprint arXiv:1808.09442,
2018.

[19] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor
Darrell, “Curiosity-driven exploration by self-supervised pre-
diction,” in International Conference on Machine Learning
(ICML), 2017, vol. 2017.

[20] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey,
Trevor Darrell, and Alexei A Efros, “Large-scale study of
curiosity-driven learning,” arXiv preprint arXiv:1808.04355,
2018.

[21] Long-Ji Lin, “Self-improving reactive agents based on rein-
forcement learning, planning and teaching,” Machine learning,
vol. 8, no. 3-4, pp. 293–321, 1992.

[22] Xiujun Li, Sarah Panda, Jingjing Liu, and Jianfeng
Gao, “Microsoft dialogue challenge: Building end-to-
end task-completion dialogue systems,” arXiv preprint
arXiv:1807.11125, 2018.

[23] Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong Li,
Jianfeng Gao, and Yun-Nung Chen, “A user simulator for
task-completion dialogues,” arXiv preprint arXiv:1612.05688,
2016.

	 Introduction
	 Neural Dialogue System Framework
	 Dialogue State Tracking
	 Dialogue Policy Learning

	 Variants of Deep-Q-Networks
	 Double DQN
	 Dueling DQN
	 Distributional DQN
	 Noisy Network
	 Curiosity-Based Exploration
	 Prioritized Experience Replay

	 Experiments
	 Benchmark Dialogue System Data
	 Setup
	 Analysis of Different DQN Algorithms
	 Double DQN
	 Dueling DQN
	 Distributional DQN
	 Prioritized DQN

	 Comparison of Exploration Strategies
	 Curiosity-based Exploration
	 Noisy Network
	 -greedy

	 Effectiveness of Additity
	 Combining with Different Variants of DQN
	 Combining with Different Exploration Strategies

	 Human Evaluation

	 Conclusion
	 References

