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o Computing devices have been easily accessible and information search has been a
common part of regular conversations, where these meetings include discussions for
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identifying participants’ next actions. é é > LN IR A B

O Human-machine interactions collected by existing intelligent systems (e.g. Cortana data) Y ' I ]
may help detect actionable items in human-human dialogues (e.g. meetings) |

Human-Machine Genre create calendar_entry

O Learning action representations using a CDSSM architecture helps transfer high-level schedule a meeting with <contact name>John</contact _name> <start_time>this afternoon</start_time>

semantics across genres
Human-Human Genre create calendar entry

how about the <contact name>three of us</contact _name> discuss this later <start time>this afternoon</start_time>? — more C_asual’ include
conversational terms

> Actionable Item Detection Task

o Goal: provide the easy access to information and perform actions a personal assistant can
handle without interrupting the meetings

» Adaptation
model adaptation
embedding vector adaptation

» Task: multi-class utterance classification
o train on the available human-machine genre O
o test on the human-human genre O

Adaptation

o Assumption: some actions and associated arguments can be shared across genres

Convolutional Deep Structured Semantic Models (CDSSM)

Shen et al., “A latent semantic model with convolutional-pooling structure for information retrieval,” in CIKM, 2014.

» Model Architecture » [ssue: source-target genre mismatch

Huang et al., “Learning deep structured semantic models for web search using click through data,” in CIKM, 2013. 4 N
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» Training Procedure
. Predictive model: A(61) = log H P(AY |U) » Bidirectional Score Estimation

» The adapted action vectors are close to the corresponding utterance vectors for the
target genre.

» During training, utterances and
action embeddings are learned.

(U,AT) * Incorporate the effectiveness of predictive |5 Duyring estimation, utterance Conclusion
» Generative model: A(62) = log H P(UT|A) and generative models embeddings are generated.
U+, A) SgiWU,I) =ySpU,I1) + (1 —y)Sc(U,1I) « The latent semantic features generated by CDSSM show the effectiveness of detecting

actions in meetings compared to lexical features, and also outperform the state-of-the-art
semantic features.

Experiments

 Evaluation metrics: the average AUC for 10 actions+others * The adaptation techniques are proposed to adjust the learned embeddings to fit the target

genre when the source genre does not match well with target genre, showing significant

« Dataset: 22 meetings from the ICSI meeting corpus
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