

UNSUPERVISED INDUCTION AND FILLING OF SEMANTIC SLOTS FOR SPOKEN DIALOGUE SYSTEMS USING FRAME-SEMANTIC PARSING Nun-Nung (Vivian) Chen, William Yang Wang, and Alexander I. Rudnicky

1. The Task

2. Probabilistic Frame-Semantic Parsing

- Motivations o SDSs require predefined semantic slots to Fra parse users' language input into unified the semantic representations o
 - Defining semantic slots requires the involvement of a domain expert
 - Frame semantics theory provides generic semantic information
 - Given a collection of unlabeled raw audios, can we use the frame semantics theory to automatically induce and fill the semantic slots in an unsupervised fashion?
- Approaches o Obtain slot candidates using a state-ofthe-art frame-semantic parser
 Propose a clustering-based ranking model to distinguish generic semantic concepts and domain-specific concepts

- Frame Semantics theory states that the meaning of most words can be expressed on the basis of semantic frames:
 - o frame (F): the frame "food" contains words referring to items of food
 - frame elements (FE): a descriptor frame element within the "food" frame indicates the characteristic of the food.
 - o lexical units (LU): the values of the corresponding frame element, such as "milk"
- SEMAFOR is a state-of-the-art semantic parser for frame semantic parsing trained on a linguistically-principled semantic resource FrameNet.
 - How to map and adapt the FrameNet-style frame-semantic parses to the semantic slots in the target semantic space for practical use in the spoken dialogue systems?
- We parse all ASR-decoded utterances using SEMAFOR and extract all frames from
- Results
 Automatically induced semantic slots have
 MAP of 69.36% for ASR-transcribed data

semantic parsing results as slot candidates, where the LUs that correspond to the frames are extracted for slot-filling.

3. Slot Ranking Models

- Main idea: rank domain-specific concepts higher than generic semantic concepts
- Rank the slot candidates by integrating two scores $w(s_i) = \log f(s_i) + \alpha \cdot h(s_i)$
 - $f(s_i)$: the frequency of each candidate slot in the SEMAFOR-parsed corpus

slots with higher frequency may be more important

- $h(s_i)$: the coherence of values the slot corresponds to
 - We assume that domain-specific concepts should focus on fewer topics and be similar to each other, so the
- Measure coherence by word-level context clustering
 - \circ For each slot S_i ,

$$V(s_i) = \{\mathbf{v_1}, ..., \mathbf{v_j}, ..., \mathbf{v_J}\}$$

slot candidate: corresponding value vectors: "cheap", "not expensive" expensiveness (from the utterances with s_i in the parsing results) We have corresponding cluster vectors

$$C(s_i) = \{\mathbf{c_1}, ..., \mathbf{c_j}, ..., \mathbf{c_J}\}$$

$$\mathbf{c_j} = [c_{j1}, ..., c_{jk}, ..., c_{jK}]$$

Spectral clustering

Reasons why spectral clustering:

- can be solved efficiently by standard linear algebra
-) invariant to the shapes and densities of each cluster
- B) projects the manifolds within data into solvable space and often outperform other approaches

• For each word $w = [r_1, ..., r_i, ...]$

 $r_i = 1$ when w occurs in the i-th utterance $r_i = 0$ otherwise

- We assume that two words are topically related when they occur in the same utterance.
- The approach can be summarized

the frequency of words in v_j clustered into cluster k

Measure coherence measure by pair-wised cosine similarity

$$h(s_i) = \frac{\sum_{\mathbf{c}_a, \mathbf{c}_b \in C(s_i), \mathbf{c}_a \neq \mathbf{c}_b} \text{CosSim}(\mathbf{c}_a, \mathbf{c}_b)}{|C(s_i)|^2}$$

The slot with higher h(s_i) usually focuses on fewer topics, which are more specific, which is preferable for slots of SDS.

4. Experiments

- in five steps:
- 1) Calculate the distance matrix
- 2) Derive the affinity matrix
- 3) Generate the graph Laplacian
- 4) Eigen decomposition of L
- 5) Perform K-means clustering of eigenvectors

- **Domain**: restaurant recommendation in an in-car setting in Cambridge* (WER = 37%)
 - Dialogue slot (total #slot = 10):

addr, area, food, name, phone, postcode, price range, signature, task, and type

- Slot Induction Evaluation
 - MAP of the slot ranking model: measure the quality of induced slots based on induced and reference slots via the mapping table

Slot Filling Evaluation

Ο

 For each slot, we compute F-measure by comparing the lists of extracted slot fillers with the induced slots and the slot fillers in the reference list

The top-5 F1-measure slot-filling corresponding to matched slot mapping for ASR

The mapping table between induced and reference slots

Induced Slot	Reference Slot		
Speak on topic	Addr		
Part orientational			
Direction	Area		
Locale			
Part inner outer			
Food	Food		
origin			
(NULL)	Name		
Contacting	Phone		

Desiring

Locating

Locale by use

building

S vivian.ynchen

Approach	ASR Manual	
Frequency	67.31	59.41
K-Means	68.45	59.76
Spectral Clustering	69.36	61.86

The majority of the reference slots that are actually used in a real world dialogue system can be induced automatically in an unsupervised fashion using our approach.

Slot Induction and Slot Filling Evaluation

 MAP-F1-Hard/Soft: weight the MAP score with F1-Hard or F1-Soft scores

Approach	MAP-F1-Hard		MAP-F1-Soft	
Approach	ASR	Manual	ASR	Manual
Frequency	26.96	27.84	27.29	28.68
K-Means	27.38	27.99	27.67	28.83
Spectral Clustering	30.52	28.40	30.85	29.22

When the induced slot mismatch the reference slot, all the slot fillers will be judged as incorrect fillers.

Sending	Direction	Origin	Evponsivonoss	Spook on tonic	Localo by uso	SEMAEOD Slot
Commerce scenario	Direction	Ongin	expensiveness	Speak off topic	Locale by use	SEIVIAFOR SIUL
Expensiveness	Area	Food	Price range	Addr	Туре	Reference Slot
Range	29.81	36.00	62.05	88.86	89.75	F1-Hard
(NULL)	29.81	43.48	62.35	88.86	89.96	F1-Soft
seeking				••••		

F1-Hard: the values of two slot fillers are exactly the same

F1-Soft: the values of two slot fillers both contain at least one overlapping words

* M. Henderson, M. Gašić, B. Thomson, P. Tsiakoulis, K. Yu, and S. Young, "Discriminative spoken language understanding using word confusion networks," in SLT, 2012.

5. Conclusions

- We propose an unsupervised approach for automatic induction and filling of semantic slots.
- Our work makes use of a state-of-the-art semantic parser, and adapts the linguistically
 principled generic FrameNet-style outputs to the target semantic space that corresponds to a
 domain-specific SDS setting.
- Our experiments show that automatically induced semantic slots align well with the reference slots created by domain experts.
- We focus on the slot-filling tasks that extract the slot-filler information from those automatically induced slots.

③ Schedule a meeting with the author?

Postcode

Price range

Signature

Task

Туре