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Abstract—We present summarization and spoken term detec-
tion (STD) approaches that take into account similarities between
utterances to be scored for summary extraction or ranking
in STD. A graph is constructed in which each utterance is a
node. Similar utterances are connected by edges, with the edge
weights representing the degree of similarity. The similarity for
summarization is topical similarity; that for STD is feature-
space similarity. The score of each utterance for extraction in
summarization and ranking in STD is not solely decided by the
individual utterance but is influenced by similar utterances on
the graph. Experimental results show significant improvements
compared with two baselines in terms of the ROUGE evaluation
for summarization and mean average precision for STD.

I. INTRODUCTION

In the Internet era, digital network content covers all of the
information and activities in human life. The most attractive
form of network content is multimedia, including speech. The
subjects, topics, and core concepts of such speech information
is usually to be found within the content itself. However,
as multimedia or spoken documents are just video or audio
signals, they are usually much more difficult to retrieve and
browse, because they cannot be easily displayed on-screen,
and the user cannot simply “skim through” each one from
beginning to end. Hence the importance of speech information
retrieval and spoken document summarization in helping users
efficiently mine speech content [1].

In general, there are two stages in a speech information
retrieval system [2]. In the first stage, the audio content is
recognized and transformed into transcriptions or lattices. In
the second stage, after the user enters a query, the retrieval
engine searches through the recognition output and returns a
list of relevant spoken utterances to the user. The discussion
in this paper is limited to spoken term detection (STD) [3], in
which the query is a term submitted by the user in text form
and the system returns a list of spoken utterances containing
that term. Summarization is the process of automatically
creating a compressed version of a given spoken document
that provides useful information for the user. The information
content of a summary depends on the user’s needs. Here we
discuss topic-oriented summaries; we thus focus on extracting
the information in the document that is related to the specified
topic. Like speech information retrieval, the spoken documents
are first transcribed into text using the recognition engine, and
then the system selects a number of indicative utterances from

the original spoken documents according to a target summa-
rization ratio, and contatenates them to form a summary.

Both STD and summarization can be considered utterance
ranking problems which rank the utterances based on cues
found in the utterance set but with different ranking targets.
In STD, the system ranks the utterances over the entire
spoken archive based on the relevance scores assigned to the
utterances representing the probabilities of the appearance of
the query term. The posterior probability of the query term
derived from the lattice is widely used as a relevance score
[4], [5]; other confidence measures are also useful [6]. In
summarization, each utterance is given an importance score
representing how well it represents the document as a whole.
The utterances are selected for the summary in the order of
the ranking of the importance scores until the number of terms
in the summary exceeds a target summarization ratio. The
importance score of each utterance is typically based on its
grammatical structure as well as various statistical measures,
linguistic measures, and confidence scores of the terms in
the utterance [7]. In mainstream approaches for STD and
summarization, the utterance ranking score relies only on
evidence observed in each individual utterance; we however
believe that the relationships among utterances may yield
fruitful information for ranking and therefore should not be
ignored.

Although much research has been devoted to ranking in-
stances, additionally taking into account such inter-instance

Fig. 1. The framework for the proposed approach.



relationships significantly complicates matters. These rela-
tionships are usually represented as a graph in which each
node is an instance; ranks are induced by the scores assigned
to the nodes. The relationships between these instances are
represented by edges, the weights of which reflect the degree
of relation. “Similarity” between instances is especially useful
for ranking. We assume that similar instances should be ranked
similarly because they share the same properties. Thus we
assign high scores to instances that are connected to other
instances with high scores; whereas instances that are similar
to other instances with low scores are assigned low scores.
In other words, each instance’s score is influenced by other
instances that share similar properties. Although similarities
between instances are usually helpful in ranking problems,
what kinds of similarities as edges are able to improve the
ranking performance should be individually researched for
each domain.

We attempt to take into account similarity between utter-
ances in summarization and STD. In topic-oriented summa-
rization, where the summary is expected to describe specific
information about the topic of the document, the utterances
in the summary should have similar content and thus similar
latent topic distributions. Hence we seek to extract utterances
with similar latent topics as the summary. Therefore, here
the similarity between utterances being considered refers to
topical similarity in summarization, and an utterance with
strong evidences to be selected to form a summary would
increase the summary selection possibility of the utterances
with similar latent topics. For spoken term detection, it has
been verified by the feature-space pseudo-relevance feedback
(PRF) techniques proposed earlier [8] that utterances that are
highly similar at the feature level to parts of the pseudo-
relevant utterances are likely to be relevant. Hence, for STD,
similarity between utterances refers to feature-space similarity
of query hypotheses. The system assigns the utterances close
relevance scores if they are characterized by similar features.

We present a graph-based method to take the advantage
of utterance similarity in STD [9] and summarization [10].
The frameworks of the proposed approaches for STD and
summarization are shown in Fig. 1, with summarization on the
right. An utterance graph is constructed for each transcribed
spoken document. The nodes on the graph are utterances in
one document, and topically similar utterances are connected
with edges. Each utterance’s importance score depends not
only on the statistical measure of the terms in the utterance
itself but also on utterances connected to it within the graph.
For STD, on the left in Fig. 1, when the user enters a query,
the retrieval engine searches through the lattices to find the
utterances containing the query term as the first-pass returned
list, which is not shown to the user. A graph is constructed
from this list in which each node represents an utterance in
the list and the edges represent high feature-space similarity
between utterances. The relevance score of each utterance is
partially decided by the utterances connected, and then the list
is reranked accordingly.

The proposed approaches for summarization and STD are

in Section II and Section III respectively. In Section IV, course
lectures were taken as an example in the experiments to test
the proposed approach for both STD and summarization. In
Section V we offer concluding remarks.

II. SUMMARIZATION WITH UTTERANCE SIMILARITY

We introduce a graph-based method that takes into account
topical similarity when computing importance scores for the
utterances in a spoken document. Whereas similar approaches
to utterance similarity have been used on text summarization
[11], [12], previous research on text only used term similarity
instead of the proposed latent topic similarity.

A. Baseline

Here the statistical measures of the terms in utterance x
belonging to spoken document d are used to infer importance
score Id(x):

Id(x) =
∑
ti∈x

n(ti, x)s(ti, d), (1)

where n(ti, x) is the occurrence count of term ti in utterance
x, and s(ti, d) is the statistical measure of term ti. In this
work, s(ti, d) is defined as described below in two different
ways.

1) Latent Topic Entropy-based Statistical Measure: Proba-
bilistic latent semantic analysis (PLSA) [13] has been widely
used to analyse the semantics of documents based on a set of
latent topics. Given a set of documents {dj , j = 1, 2, ..., J}
and all the terms {ti, i = 1, 2, ...,M} they include, PLSA
uses a set of latent topic variables, {Tk, k = 1, 2, ...,K}, to
characterize the “term-document” co-occurrence relationships.
The probability of observing term ti given document dj can
be parameterized by

P (ti|dj) =
K∑
k=1

P (ti|Tk)P (Tk|dj). (2)

The PLSA model can be optimized using the EM algorithm
by maximizing a likelihood function.

The latent topic entropy (LTE), LTE (ti), for a given term
ti can be calculated as (3) from the topic distribution P (Tk|ti)
for each term ti:

LTE (ti) = −
K∑
k=1

P (Tk|ti) logP (Tk|ti), (3)

where the topic distribution P (Tk|ti) can be estimated as
follows [14], [15]:

P (Tk|ti) =
P (ti|Tk)× P (Tk)

P (ti)
' P (ti|Tk)

P (ti)
, (4)

where the probability P (Tk) is omitted because there is as yet
no good approach to estimate it. P (ti) can be obtained from a
large corpus. LTE (ti) is a measure of how focused the term
ti is on a few topics; a lower latent topic entropy implies the
term carries more topical information.



The statistical measure s(ti, d) in (1) can be defined based
on LTE (ti) in (3) as

s
LTE

(ti, d) =
n(ti, d)

LTE (ti)
, (5)

where n(ti, d) is the occurrence count of term ti in document
d. Score sLTE (ti, d) is inversely proportional to LTE (ti).
Previous work [14], [15] has showed that this measure out-
performs the very successful “significance score” in speech
summarization [7]. Here we use s

LTE
(ti, d) as one of the

baselines.
2) Key-Term-based Statistical Measure: Key terms are the

terms in a document that carry the core concepts of the
content. They are useful for indexing, retrieval, and browsing.
In general there are two types of key terms: keywords (single
words) and key phrases (such as “hidden Markov model”). Au-
tomatically extracting key terms from spoken content is still a
difficult problem, but some initial approaches have been shown
to be successful in recent experiments [16]. Such approaches
include the use of right/left branching entropy derived from
PAT-Trees to extract frequently occurring patterns including
two or more words, and identifying or verifying key terms
(including key phrases) by prosodic (pitch, duration, energy),
lexical, and semantic (from PLSA) features with unsuper-
vised techniques or supervised training. Such automatically
extracted key terms are very helpful in summarization.

With key terms thus automatically extracted (with some
errors), we can estimate a new latent topic probability
P

KEY
(Tk|d) that is hopefully better than the P (Tk|d) calcu-

lated directed from the PLSA model:

P
KEY

(Tk|d) =
∑
ti∈key n(ti, d)P (Tk|ti)∑K

k=1

∑
ti∈key n(ti, d)P (Tk|ti)

, (6)

where key is the set of automatically extracted key terms, and
P (Tk|ti) is in (4). Therefore only the automatically extracted
key terms ti in d are considered, eliminating the influence
from other insignificant terms. We then define the statistical
measure s(ti, d) as

s
KEY

(ti, d) =

K∑
k=1

LTS ti(Tk)PKEY
(Tk|d). (7)

LTS ti(Tk), the latent topic significance (LTS) for term ti with
respect to topic Tk, is defined [14], [15] as

LTS ti(Tk) =

∑
dj∈D n(ti, dj)P (Tk|dj)∑

dj∈D n(ti, dj)[1− P (Tk|dj)]
, (8)

where n(ti, dj) is the occurrence count of term ti in document
dj . In the numerator of (8), the count of term ti in document
dj , n(ti, dj), is weighted by the likelihood that topic Tk
is addressed by document dj , P (Tk|dj), and then summed
over all documents dj in the PLSA model training corpus D.
Therefore the numerator is the total count of term ti used for
the given topic Tk over the whole PLSA training corpus, as
estimated by PLSA model. The denominator is very similar
except that it is for latent topics other than Tk, so P (Tk|dj)

Fig. 2. A simplified example of a graph, the nodes of which correspond to
utterances. Ai and Bi are the node sets connected respectively by outgoing
and incoming edges of xi.

is replaced with [1 − P (Tk|dj)]. Thus, a higher LTS ti(Tk)
indicates the term ti is more significant for latent topic Tk.

B. Proposed Approach

To take into account the topical similarity between utter-
ances during summarization, a graph representing the topical
similarity between utterances in document d is first con-
structed. All the utterances in d are nodes on the graph,
and each utterance connects to only the N1 most topically
similar utterances. Then an importance score is assigned to
each utterance based on the graph structure. The weights
of the edges correspond to the topical similarity between
the associated utterances. To estimate the topical similarity
between two utterances, we first compute the probability that
topic Tk is addressed by utterance xi,

P (Tk|xi) =
∑
t∈xi

n(t, xi)P (Tk|t)∑
t∈xi

n(t, xi)
. (9)

Then the edge weight for utterance xi to xj (with direction
xi → xj) is defined by accumulating LTS t(Tk) in (8)
weighted by P (Tk|xi) for all terms t in xj over all latent
topics,

Wtopic(xi, xj) =
∑
t∈xj

K∑
k=1

LTS t(Tk)P (Tk|xi). (10)

A simplified example for such graph is given in Figure 2, in
which Ai and Bi are the utterance sets connected by outgoing
and incoming edges of utterance xi respectively.

Consider document d with utterances {xi, i = 1, 2, ..., Nd}.
The proposed importance scores are {IGd (xi), i = 1, 2, ..., Nd}
satisfying the equation

IGd (xi) = (1− α)Îd(xi) + α
∑
xj∈Bi

Ptopic(j, i)I
G
d (xj) (11)

for i = 1, 2, ..., Nd. Bi is the set of utterances connected
to utterance xi via incoming edges. Îd(xi) is the normalized
importance score

Îd(xi) =
Id(xi)∑Nd

j=1 Id(xj)
. (12)



Fig. 3. The definition of “hypothesised region”(the red part) of an utterance
xi and the distance d(xi, xj) between two utterances xi and xj . The
hypothesised region of an utterance xi is the corresponding time span of
a word arc in the lattice whose word hypothesis is exactly the query Q with
the highest posterior probability in the lattice.

Id(xj) can use either a LTE-based or key-term-based statistical
measure. Ptopic(j, i) is the weight of the edge from xj to
xi normalized by the weights over the outgoing edges of
utterance xj :

Ptopic(j, i) =
Wtopic(xj , xi)∑

xk∈Aj
Wtopic(xj , xi)

, (13)

where Aj are the utterances connected by the outgoing edges
of xk. α is an interpolation weight between 0 and 1. Thus
IGd (xi), the new importance score of xi, takes into account
not only the statistical measures of the terms in xi but also
the importance scores of the utterances that are topically very
similar to xi. The higher the edge weight, that is, the topical
similarity, the more influence it has on the importance score
of xi. During summarization, with the graph-based (11), all
utterances in the document d are taken into consideration
jointly and not individually. The normalizations in (12) and
(13) are necessary to formulate (11) as the random walk
problem [17], [18]. The theory of the random walk guarantees
that {IGd (xi), i = 1, 2, ..., Nd} satisfying (11) is unique and
nonnegative, which can be found efficiently by the power
method [19].

For better results, IGd (xi) is integrated with the baseline
Id(xi) as

I ′d(xi) = Id(x)(I
G
d (xi))

δ1 , (14)

where δ1 is a weighting parameter. The proposed approach
uses I ′d(xi) as the importance score when ranking the utter-
ances in a spoken archive for summary selection.

III. SPOKEN TERM DETECTION
WITH UTTERANCE SIMILARITY

When the user submits query Q, the retrieval engine
searches over all of the lattices to find those utterances
containing the query Q as the first-pass returned list ranked by
the relevance score SQ(x). The spoken segment set retrieved
in the first pass is denoted as XQ. With the success of acoustic
feature space pseudo-relevance feedback (PRF) [8], we know
that if an utterance has a “hypothesized region” very “similar”
to utterances with high relevance scores, it is more likely

to be relevant, or its relevance score should be increased. A
hypothesized region (Fig. III) is the most probable occurrence
of query Q in the utterance, as the corresponding time span
of a word arc in the lattice whose word hypothesis is exactly
the query term Q with the highest posterior probability in the
lattice. As shown in Fig. III, the distance d(xi, xj) between
two utterances xi and xj given query Q is the dynamic time
warping distance [20] of the MFCC sequences corresponding
to the time spans of the hypothesized region. The feature-
space similarity between the utterances xi and xj is defined
according to d(xi, xj). Here we introduce a graph-based
approach for reranking the first-pass returned list with feature-
space similarity.

A. Baseline

We use as the first baseline the first-pass retrieval result,
ranked according to the widely-used query posterior probabil-
ity. PRF is used as the second set of baselines.

1) First Pass: The relevance score SQ(x) of utterance x
with respect to query Q is defined as

SQ(x) =
∑

word(a)=Q

P (a|x), (15)

where a is any arc in the lattice of x, word(a) is the word
hypothesis of a and P (a|x) is the posterior probability. The
first pass retrieval result is ranked according to SQ(x).

2) Pseudo-Relevance Feedback: In PRF, a pseudo-relevant
utterance set YQ is selected out of the first-pass retrieval result
XQ for query Q, and the similarity between each utterance
xi in the first-pass returned list and the set YQ is computed
and integrated with the original relevance score. The top N
utterances in the returned list (that is, the N utterances with
highest relevance scores) in XQ are selected as YQ. The
distance between utterance xi and set YQ is

D(xi, YQ) =
∑
xj∈YQ

d(xi, xj)
2, (16)

the total distance between xi and all utterances in YQ.
The value of D(xi, YQ) is normalized between 0 and 1 as
D̂(xi, YQ), and the similarity between xi and YQ is

SIM (xi, YQ) = 1− D̂(xi, YQ), (17)

which is 1 minus the normalized distance between xi
and YQ. The retrieval result is ranked according to
SQ(x)SIM (xi, YQ)

δ , where SQ(x) is defined in (15).

B. Proposed Approach

To take into account utterance similarities in STD rank-
ing, we first construct a graph representing the feature-space
similarities between the utterances of the first-pass retrieved
utterances XQ. Each utterance in XQ is a node in the graph,
and each utterance (node) connects to the most similar N2

utterances in feature space. The weight of the edge from
utterance xi to xj is

Wsim(xi, xj) = 1− d(xi, xj)− dmin

dmax − dmin
, (18)



where dmax and dmin are the largest and smallest values
of d(xi, xj) for all pairs of utterances in XQ. 1 Then new
feature-space similarity-based relevance scores are obtained
based on the graph structure. This graph is the same as Fig. 2
but uses edges that instead represent feature-space similarities.
The definitions of Ai and Bi are the same as in Section II-B.

The proposed relevance scores {RGQ(xi), xi ∈ XQ} com-
pose the value set satisfying

RGQ(xi) = (1− α)R̂Q(xi) + α
∑
xj∈Bi

Psim(j, i)RGQ(xj) (19)

for all xi ∈ XQ.

R̂Q(xi) =
SQ(xi)∑

xj∈XQ
SQ(xj)

(20)

is the normalized relevance score of utterance xi, SQ(x) is
as defined in (15), and XQ is the first-pass retrieved utter-
ance set. Psim(j, i) is the normalization of the edge weight
Wsim(xj , xi) over the outgoing edges of utterance xj on the
graph:

Psim(j, i) =
Wsim(xj , xi)∑

xk∈Aj
Wsim(xj , xk)

, (21)

where Aj are again the utterances connected by the outgoing
edges of xk. α is an interpolation weight between 0 and 1.
Equation (19) shows that RGQ(xi), the new relevance score of
utterance xi, depends on two factors. One is the posterior prob-
ability of query Q in the xi lattice (the first term on the right
side of (19)), and the other is the relevance scores of the similar
utterances (the second term on the right side). Compared with
PRF, which takes into account only similarities to utterances
in the pseudo-relevant set, the proposed approach takes into
consideration the relations of all the utterances retrieved. To
be specific, PRF only raises the scores of utterances that are
connected to other utterances with high relevance scores; the
proposed method, however, also lowers the relevance scores
of those utterances that are connected to other utterances with
low relevance utterances. Therefore, the proposed approach
outperforms PRF. The normalization in (21) and (20) here
formulates (19) as a random walk problem on a graph. As
mentioned in Section II-B, the solution of {RGQ(xi), xi ∈ XQ}
satisfying (19) is unique and nonnegative.
RGQ(xi) is integrated with the original relevance score

SQ(xi) for re-ranking as

S′Q(xi) = SQ(xi)(R
G
Q(xi))

δ2 , (22)

where δ2 is a weighting parameter. The final retrieval result
displayed to the user is then ranked according S′Q(xi).

IV. EXPERIMENTS

A. Corpus

As the testing archive we used a corpus of 33 hours of
recorded lectures for a course offered at National Taiwan
University produced by a single instructor. Used for retrieval

1Wsim (xi, xj) and Wsim (xj , xi) are equal.

and summarization, this corpus is quite noisy and spontaneous.
The lectures were given in Mandarin Chinese (the “host”
language) with English (the “embedded” language) terms and
phrases embedded within the Mandarin utterances.

B. Summarization

1) Experimental Setup: For summary experiments, both
manual transcriptions (Manual) without word errors and the
results of speech recognition (ASR) on the lectures were used
for testing. For speech recognition, the acoustic model was
trained using the maximum likelihood criterion with 4602
state-tied triphones spanned from 37 monophones using a
corpus of noiseless Mandarin read speech, including 24.6
hours of data produced by 100 males and 100 females, and
adapted with a 25.2-minutes bilingual corpus from the target
speaker (the course instructor) [21]. The language model was
trained with two other courses offered by the same instructor
and was adapted to the course slides. The accuracies for
the ASR transcriptions were 78.15% for Mandarin characters,
53.44% for English words, and 76.26% overall. The unsuper-
vised automatic key term extraction approach mentioned in
Section II-A2 was used, and both keywords and key phrases
were extracted [16]. The key terms F-measures for ASR and
manual transcriptions were 52.60% and 55.84% respectively.

To evaluate the performance of the automatically gener-
ated summaries, we used the well-known evaluation package
ROUGE [22]. The ROUGE-N F-measure (N = 1, 2, 3) and
ROUGE-L were used to evaluate summarization results. We
segmented the whole lecture into 155 documents using topic
segmentation [23], and extracted the summary for each docu-
ment. As the test corpus we used 34 out of the 155 documents
for which reference summaries were produced manually. We
used 32 topics for PLSA, and set α to 0.9. In the experiments
presented below, the summarization ratio was set to 10%, 20%,
and 30% respectively. The automatically extracted key phrases
(all with more than one word) were taken as individual terms
in PLSA modeling and all following processes.

2) Experimental Results: Fig. 4 shows the results for
ROUGE-N and ROUGE-L for ASR ((a)–(d)) and manual
transcriptions ((e)–(h)). In each case the three groups of bars
are for 10%, 20%, and 30% summarization ratios, and in
each group the four bars are respectively for the LTE-based
statistical measure sLTE (ti, d) in (5), that followed by the
proposed topical similarity graph (LTE + G), the key-term-
based statistical measure in (7) (Key) and that followed by
the proposed approach (Key + G). In all cases, the key-
term-based statistical measure (bar 3) outperformed the LTE
baseline (bar 1). Clearly key term knowledge was very helpful,
especially for manual transcriptions. This is probably because
in manual transcriptions all key terms were correctly tran-
scribed (although they were sometimes incorrectly extracted),
which ensured more accurate estimation of the key-term-
based statistical measures. Similar but slightly less significant
improvements were yielded for ASR transcriptions.

In all cases, the proposed approach considering utterance
relationships based on topical similarity graph improved on



Fig. 4. The results of different choices of parameters: LTE-based (1, 2) or key-
term-based (3, 4), with (2, 4) or without (1, 3) the topical similarity graph, for
ASR ( (a)–(d) ) or manual ( (e)–(h) ) transcriptions at summarization ratios
of 10%, 20%, and 30%.

the LTE-based statistical measure (bar 2 vs bar 1), except for
ASR ROUGE-3 with the 20% summarization ratio. For ASR
transcriptions ((a)–(d)), the proposed approach also improved
on the key-term-based statistical measure (bar 4 vs bar 3).
However, at the 10% and 30% summarization ratios for
manual transcriptions ((e)–(h)), the proposed approach did not
similarly with help the key-term-based statistical measure (bar
4 vs bar 3). This may be because for manual transcriptions,
important utterances were already well represented by the
key-term-based statistical measure; hence adding extra topical
similarity among utterances did not lead to better performance.

C. Spoken Term Detection

1) Experimental Setup: A tri-gram language model trained
on news data was used in speech recognition. In order to
evaluate the performance of the proposed approach with
respect to acoustic models of different matched conditions,
we used three sets of acoustic models:
• A speaker-independent model (SI) trained on 24.6 hours

of read speech produced by 100 male and 100 female
speakers.

• An MLLR model (MLLR) adapted from the above SI
model on 500 utterances taken from the training set of
the lecture corpus.

• A speaker-dependent model (SD) trained on 12 hours of
the training set of the lecture corpus, all produced by the
same speaker as that in the retrieval corpus.

For all acoustic models, we trained 4602 state-tied triphones
spanned from 37 monophones. The recognition accuracies
were 50.26%, 62.55%, and 81.34% respectively for the SI,
MLLR, and SD models.

TABLE I
MAP results for the baseline, PRF, and the proposed approach with various

acoustic models.

Methods SI MLLR SD
MAP Impr. MAP Impr. MAP Impr.

First pass 45.47 - 55.54 - 73.52 -
PRF 52.10 6.63 61.59 6.05 75.78 2.26

Proposed 53.42 7.95 63.78 8.24 76.71 3.19

Mean average precision (MAP) was used as the measure for
retrieval performance evaluation. 162 Mandarin queries were
manually selected in the tests, each being a single word.

2) Experimental Results: The results of the first-pass re-
trieval for the three sets of acoustic models are listed in
the first row of Table I as the first baseline. Clearly the
performance is heavily dependent on the quality of the acoustic
model. The second row is PRF (described in Section III-A2),
which outperforms the baseline regardless of the quality of the
acoustic model. PRF serves as the second baseline.

The results of integrating the original score in (15) with the
proposed scores satisfying (19) are shown in the third row of
Table I. These results show that the integration with the scores
derived based on utterance similarity yields better performance
than the first-pass results for all acoustic models, especially
with poorer acoustic models (SI and MLLR), or when the
original relevance scores are less precise. It also clearly
outperformed the PRF approach. This shows the effectiveness
of taking into account the complete relationships between all
the utterances retrieved.

V. CONCLUSIONS

We present graph-based approaches that take into account
utterance similarity for summarization and STD. All ap-
proaches take utterances as nodes on the graph. Edge weights
for summarization are represented by topical similarities;
those for STD are represented by feature-space similarities.
Encouraging results were obtained in the experiments for both
tasks.
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