

UNSUPERVISED LEARNING AND MODELING OF KNOWLEDGE AND INTENT FOR SPOKEN DIALOGUE SYSTEMS

Yun-Nung (Vivian) Chen | http://vivianchen.idv.tw

OUTLINE

Introduction

- Semantic Decoding
- Ontology Induction
- Knowledge Graph Propagation
- Matrix Factorization
- Experiments
- Future Work
- Conclusions

OUTLINE

Semantic Decoding [ACL-IJCNLP'15]

- Ontology Induction
- Knowledge Graph Propagation
- Matrix Factorization
- Experiments
- Future Work
- Conclusions

A POPULAR ROBOT - BAYMAX

A POPULAR ROBOT - BAYMAX

Baymax is capable of maintaining a good **spoken dialogue system** and **learning** new knowledge for better **understanding** and **interacting** with people.

The goal is to automate learning and understanding procedures in system development.

SPOKEN DIALOGUE SYSTEM (SDS)

Spoken dialogue systems are the intelligent agents that are able to help users finish tasks more efficiently via speech interactions.

Spoken dialogue systems are being incorporated into various devices (smart-phones, smart TVs, in-car navigating system, etc).

https://www.apple.com/ios/siri/

http://www.windowsphone.com/en-us/how-to/wp8/cortana/meet-cortana

http://www.xbox.com/en-US/

http://www.amazon.com/oc/echo/

http://www.samsung.com/us/experience/smart-tv/

https://www.google.com/landing/now/

LARGE SMART DEVICE POPULATION

The number of global smartphone users will surpass 2 billion in 2016. As of 2012, there are 1.1 billion automobiles on the earth.

The more **natural** and **convenient** input of the devices evolves towards speech

KNOWLEDGE REPRESENTATION/ONTOLOGY

Traditional SDSs require **manual annotations** for **specific domains** to represent domain knowledge.

UTTERANCE SEMANTIC REPRESENTATION

A spoken language understanding (SLU) component requires the domain ontology to decode utterances into semantic forms, which contain **core content (a set of slots and slot-fillers)** of the utterance.

CHALLENGES FOR SDS

An SDS in a new domain requires

- 1) A hand-crafted domain ontology
- 2) Utterances labelled with semantic representations
- 3) An SLU component for mapping utterances into semantic representations

With increasing spoken interactions, building domain ontologies and annotating utterances cost a lot so that the data does not scale up.

The goal is to enable an SDS to automatically learn this knowledge so that open domain requests can be handled.

INTERACTION EXAMPLE

Q: How does a dialogue system process this request?

SDS PROCESS – AVAILABLE DOMAIN ONTOLOGY

SDS PROCESS – AVAILABLE DOMAIN ONTOLOGY

SDS PROCESS – AVAILABLE DOMAIN ONTOLOGY

SDS PROCESS – SPOKEN LANGUAGE UNDERSTANDING (SLU)

SDS PROCESS – SPOKEN LANGUAGE UNDERSTANDING (SLU)

SDS PROCESS – NATURAL LANGUAGE GENERATION (NLG)

GOALS

Required Domain-Specific Information

FIVE GOALS

Required Domain-Specific Information

FIVE GOALS

4. Semantic Decoding

5. Behavior Prediction

2. Structure Learning (inter-slot relation)

FIVE GOALS

OUTLINE

Introduction

- Ontology Induction
- Knowledge Graph Propagation
- Matrix Factorization
- Experiments
- Future Work
- Conclusions

SEMANTIC DECODING

Input: user utterances

Output: the domain-specific semantic concepts included in each individual utterance

OUTLINE

Introduction

>

Semantic Decoding [ACL-IJCNLP'15]

- Ontology Induction
- Knowledge Graph Propagation
- Matrix Factorization
- Experiments
- Future Work
- Conclusions

PROBABILISTIC FRAME-SEMANTIC PARSING

FrameNet [Baker et al., 1998]

- a linguistically semantic resource, based on the frame-semantics theory
- "low fat milk" \rightarrow "milk" evokes the "food" frame;

"low fat" fills the descriptor frame element

SEMAFOR [Das et al., 2014]

 a state-of-the-art frame-semantics parser, trained on manually annotated FrameNet sentences

FRAME-SEMANTIC PARSING FOR UTTERANCES

FT: Frame Target; FE: Frame Element; LU: Lexical Unit

1st Issue: adapting generic frames to domain-specific settings for SDSs

OUTLINE

Introduction

Semantic Decoding [ACL-IJCNLP'15]

- Ontology Induction
- Knowledge Graph Propagation (for 1st issue)
- Matrix Factorization
- Experiments
- Future Work
- Conclusions

SEMANTIC DECODING

Input: user utterances

Output: the domain-specific semantic concepts included in each individual utterance

IST ISSUE: HOW TO ADAPT GENERIC SLOTS TO DOMAIN-SPECIFIC? KNOWLEDGE GRAPH PROPAGATION MODEL

Assumption: The domain-specific words/slots have more dependency to each other.

The relation matrices allow each node propagate the scores to its neighbor in the knowledge graph, so that the domain-specific words/slots have higher scores during training.

KNOWLEDGE GRAPH CONSTRUCTION

Syntactic dependency parsing on utterances

KNOWLEDGE GRAPH CONSTRUCTION

The edge between a node pair is weighted as relation importance for build the matrix

How to decide the weights to represent relation importance?

WEIGHT MEASUREMENT BY EMBEDDINGS

WEIGHT MEASUREMENT BY EMBEDDINGS

Compute edge weights to represent relation importance

- Slot-to-slot semantic relation R_S^S : similarity between slot embeddings
- Slot-to-slot dependency relation R_S^D : dependency score between slot embeddings
- Word-to-word semantic relation R_w^S : similarity between word embeddings
- Word-to-word dependency relation R_w^D : dependency score between word embeddings

KNOWLEDGE GRAPH PROPAGATION MODEL

OUTLINE

Introduction

Semantic Decoding [ACL-IJCNLP'15]

- Ontology Induction
- Knowledge Graph Propagation
- Matrix Factorization (for 2nd issue)
 - Experiments

- Future Work
- Conclusions

MATRIX FACTORIZATION (MF) FEATURE MODEL

2nd Issue: hidden semantics cannot be observed but may benefit the understanding performance

2ND ISSUE: HOW TO LEARN THE IMPLICIT SEMANTICS? MATRIX FACTORIZATION (MF)

The MF method completes a partially-missing matrix based on the latent semantics by decomposing it into product of two matrices.

MATRIX FACTORIZATION (MF)

The decomposed matrices represent latent semantics for utterances and words/slots respectively The product of two matrices fills the probability of hidden semantics

BAYESIAN PERSONALIZED RANKING FOR MF

Model implicit feedback

not treat unobserved facts as negative samples (true or false)

give observed facts higher scores than unobserved facts

$$f^{+} = \langle u, x^{+} \rangle$$

$$f^{-} = \langle u, x^{-} \rangle$$

$$p(f^{+}) > p(f^{-})$$

$$p(M_{u,x} = 1 \mid \theta_{u,x}) = \sigma(\theta_{u,x}) = \frac{1}{1 + \exp(-\theta_{u,x})}$$

Objective:

$$\sum_{f^+ \in \mathcal{O}} \sum_{f^- \not\in \mathcal{O}} \ln \sigma(\theta_{f^+} - \theta_{f^-})$$

The objective is to learn a set of well-ranked semantic slots per utterance.

2ND ISSUE: HOW TO LEARN THE IMPLICIT SEMANTICS? MATRIX FACTORIZATION (MF)

The MF method completes a partially-missing matrix based on the latent semantics by decomposing it into product of two matrices.

OUTLINE

Introduction

Semantic Decoding [ACL-IJCNLP'15]

- Ontology Induction
- Knowledge Graph Propagation
- Matrix Factorization

Experiments

- Future Work
- Conclusions

EXPERIMENTAL SETUP

Dataset

- Cambridge University SLU corpus 📰 [Henderson, 2012]
 - Restaurant recommendation in an in-car setting in Cambridge
 - WER = 37%
 - vocabulary size = 1868
 - 2,166 dialogues
 - 15,453 utterances
 - dialogue slot: addr, area, food, name, phone, postcode, price range, task, type

The mapping table between induced and reference slots

Metric: Mean Average Precision (MAP) of all estimated slot probabilities for each utterance

Approach			ASR	Manual	
		w/o	w/ Explicit	w/o	w/ Explicit
	Support Vector Machine	32.5		36.6	
Explicit	Multinomial Logistic Regression	34.0		38.8	

Metric: Mean Average Precision (MAP) of all estimated slot probabilities for each utterance

		A mmraigh			ASR	Manual	
	Approach			w/o	w/ Explicit	w/o	w/ Explicit
	Explicit	Support Vector Machine		32.5		36.6	
		Multinomial Logistic Regression		34.0		38.8	
ſ		Baseline icit MF	Random				
Modeling	Implicit		Majority				
Implicit Semantics			Feature Model				
Sentannes			Feature Model +				
			Knowledge Graph Propagation				

Metric: Mean Average Precision (MAP) of all estimated slot probabilities for each utterance

			A mayor ab	ASR	Manual
	Approach			w/o w/	Explicit w/o w/ Explicit
	Explicit	Support Vector Machine		32.5	36.6
٦		Multinomial Logistic Regression		34.0	38.8
	Implicit	Baseline mplicit MF	Random	3.4	2.6
Modeling			Majority	15.4	16.4
Implicit Semantics			Feature Model	24.2	22.6
			Feature Model +	40.5 *	52.1 *
			Knowledge Graph Propagation	(+1 9. 1%)	(+34.3%)

Metric: Mean Average Precision (MAP) of all estimated slot probabilities for each utterance

			Ammonah	A	SR	Manual	
			Approach	w/o w/ Explicit		w/o	w/ Explicit
	F I. .	Support Vector Machine		32.5		36.6	
	Explicit	Multinomial Logistic Regression		34.0		38.8 🕂	
Γ	Implicit	Baseline it MF	Random	3.4	22.5	2.6	25.1
Modeling			Majority	15.4	32.9	16.4	38.4
Implicit _ Semantics			Feature Model	24.2	37.6*	22.6	45.3 [*]
			Feature Model +	40.5 *	43.5 *	52.1 *	53.4 *
			Knowledge Graph Propagation	(+19.1 %)	(+27.9 %)	(+34.3%)	(+37.6%)

The MF approach effectively models hidden semantics to improve SLU.

Adding a knowledge graph propagation model further improves the results.

EXPERIMENT 2: EFFECTIVENESS OF RELATIONS

Approach			ASR	Manual
Feat	ure Model	37.6	45.3	
	Semantic	$\begin{bmatrix} R_w^S & 0\\ 0 & R_s^S \end{bmatrix}$	41.4*	51.6*
Feature + Knowledge Graph	Dependency	$\begin{bmatrix} R_w^D & 0 \\ 0 & R_s^D \end{bmatrix}$	41.6*	49.0 [*]
Propagation	Word	$\begin{bmatrix} R_w^{SD} & 0 \\ 0 & 0 \end{bmatrix}$	39.2*	45.2
	Slot	$\begin{bmatrix} 0 & 0 \\ 0 & R_s^{SD} \end{bmatrix}$	42.1*	49.9*
	Both	$\begin{bmatrix} R_{\rm w}^{SD} & 0\\ 0 & R_s^{SD} \end{bmatrix}$		

All types of relations are useful to infer hidden semantics.

EXPERIMENT 2: EFFECTIVENESS OF RELATIONS

A	oproach	ASR	Manual	
Feat	ure Model	37.6	45.3	
	Semantic	$\begin{bmatrix} R_w^S & 0 \\ 0 & R_s^S \end{bmatrix}$	41.4*	51.6*
Feature + Knowledge Graph	Dependency	$\begin{bmatrix} R_w^D & 0 \\ 0 & R_s^D \end{bmatrix}$	41.6*	49.0 [*]
Propagation	Word	$\begin{bmatrix} R_w^{SD} & 0 \\ 0 & 0 \end{bmatrix}$	39.2*	45.2
	Slot	$\begin{bmatrix} 0 & 0 \\ 0 & R_s^{SD} \end{bmatrix}$	42.1*	4 9.9 *
	Both	$\begin{bmatrix} R_{w}^{SD} & 0\\ 0 & R_{s}^{SD} \end{bmatrix}$	43.5 [*] (+15.7%)	53.4 [*] (+17.9%)

All types of relations are useful to infer hidden semantics.

Combining different relations further improves the performance.

OUTLINE

Introduction

- Semantic Decoding [ACL-IJCNLP'15]
- Ontology Induction
- Knowledge Graph Propagation
- Bayesian Personalized Ranking for Matrix Factorization
- Experiments

Future Work

Conclusions

LOW- AND HIGH-LEVEL UNDERSTANDING

Semantic concepts for individual utterances do not consider high-level semantics (user intents) The follow-up behaviors are observable and usually correspond to user intents

BEHAVIOR PREDICTION

OUTLINE

Introduction

- Semantic Decoding [ACL-IJCNLP'15]
- Ontology Induction
- Knowledge Graph Propagation
- Bayesian Personalized Ranking for Matrix Factorization
- Experiments

Future Work

CONCLUSIONS

The ontology induction and knowledge graph construction enable systems to automatically acquire open domain knowledge.

The MF technique for SLU modeling provides a principle model that is able to unify the automatically acquired knowledge, and then allows systems to consider implicit semantics for better understanding.

- Better semantic representations for individual utterances
- Better follow-up behavior prediction

The work shows the feasibility and the potential of improving generalization, maintenance, efficiency, and scalability of SDSs.

Q & A

Thanks for your attentions!!

CAMBRIDGE UNIVERSITY SLU CORPUS

hi i'd like a restaurant in the cheap price range in the centre part of town	type=restaurant, pricerange=cheap, area=centre
um i'd like chinese food please	food=chinese
how much is the main cost	pricerange
okay and uh what's the address	addr
great uh and if i wanted to uh go to an italian restaurant instead	food=italian, type=restaurant
italian please	food=italian
what's the address	addr
i would like a cheap chinese restaurant	pricerange=cheap, food=chinese, type=restaurant
something in the riverside	area=centre

WORD EMBEDDINGS

Training Process

- Each word w is associated with a vector
- The contexts within the window size c are considered as the training data D
- Objective function:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le i \le c, i \ne 0} \log p(w_t \mid w_{t+i})$$

Mikolov et al., "Efficient Estimation of Word Representations in Vector Space," in Proc. of ICLR, 2013. Mikolov et al., "Distributed Representations of Words and Phrases and their Compositionality," in Proc. of NIPS, 2013. Mikolov et al., "Linguistic Regularities in Continuous Space Word Representations," in Proc. of NAACL-HLT, 2013.

DEPENDENCY-BASED EMBEDDINGS

Word & Context Extraction

can i have a cheap restaurant

Word	Contexts
can	have/ccomp
i	have/nsub ⁻¹
have	can/ccomp ⁻¹ , i/nsubj, restaurant/dobj
a	restaurant/det ⁻¹
cheap	restaurant/amod ⁻¹
restaurant	have/dobj ⁻¹ , a/det, cheap/amod

DEPENDENCY-BASED EMBEDDINGS

Training Process

- Each word w is associated with a vector v_w and each context c is represented as a vector v_c
- Learn vector representations for both words and contexts such that the dot product $v_w \cdot v_c$ associated with good word-context pairs belonging to the training data D is maximized
- Objective function:

$$\arg\max_{v_w, v_c} \sum_{(w,c)\in D} \log \frac{1}{1 + \exp(-v_c \cdot v_w)}$$

SLOT MAPPING TABLE

Create the mapping if slot fillers of the induced slot are included by the reference slot

SEMAFOR PERFORMANCE

The SEMAFOR evaluation

Table 5

Frame identification results on both the SemEval 2007 data set and the FrameNet 1.5 release. Precision, recall, and F_1 were evaluated under exact and partial frame matching; see Section 3.3. **Bold** indicates best results on the SemEval 2007 data, which are also statistically significant with respect to the baseline (p < 0.05).

FRAME IDENTIFICATION (§5.2)		exa	ct match	ning	parti	al mato	hing
		P	R	F ₁	P	<i>R</i>	F ₁
SemEval 2007 Data	gold targets	60.21	60.21	60.21	74.21	74.21	74.21
	automatic targets (§4)	69.75	54.91	61.44	77.51	61.03	68.29
	J&N'07 targets	65.34	49.91	56.59	74.30	56.74	64.34
	<i>Baseline: J&N'07</i>	66.22	<i>50.57</i>	<i>57.34</i>	<i>73.86</i>	<i>56.41</i>	63.97
FrameNet 1.5 Release	gold targets	82.97	82.97	82.97	90.51	90.51	90.51
	– unsupported features	80.30	80.30	80.30	88.91	88.91	88.91
	& – latent variable	75.54	75.54	75.54	85.92	85.92	85.92