Learning Spoken Language Representations with Neural Lattice Language Modeling

Chao-Wei Huang Yun-Nung (Vivian) Chen

National Taiwan University

r07922069@ntu.edu.tw y.v.chen@ieee.org

Code available at https://github.com/MiuLab/Lattice-ELMo
The idea of LM pretraining is adopted on lattices

We introduce a lattice language modeling objective

A 2-stage framework is proposed for learning contextualized representations of lattices efficiently
Task: Spoken Language Understanding

- Intuitive way for SLU: pipelined approach

- ASR errors affects downstream tasks

We can preserve uncertainty using ASR lattices
Preserve uncertainty using ASR lattices

• Lattices:
 directed acyclic graphs which encode several ASR hypotheses
Preserve uncertainty using ASR lattices

Using lattices helps

LM pre-training helps

LatticeRNN

ELMo

Can we combine them together?
Lattice language modeling

• Use LatticeLSTM to encode nodes of a lattice

• Ask the model to predict the outgoing transitions (words) given a node’s representation

• When the lattice has only one hypothesis, this reduces to normal language modeling
Lattice language modeling

- So now we can pre-train a LatticeELMo!

- However, LatticeLSTM runs prohibitively slow

- Observation: sequential text is actually a lattice with only one hypothesis

 => normal LM pretraining is also lattice LM pretraining

We can do pre-training in two stages!
Two-stage pre-training

Stage 1: Pre-Training on Sequential Texts

Stage 2: Pre-Training on Lattices

Training Target Task Classifier

classification

Max pooling

LatticeLSTM
Results

<table>
<thead>
<tr>
<th></th>
<th>ATIS</th>
<th>SNIPS</th>
<th>SWDA</th>
<th>MRDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual + ELMo</td>
<td>91.6</td>
<td>94.99</td>
<td>95.89</td>
<td>91.48</td>
</tr>
<tr>
<td>1-best</td>
<td>91.69</td>
<td>96.8</td>
<td>91.89</td>
<td>72.18</td>
</tr>
<tr>
<td>1-best + ELMo</td>
<td>91.69</td>
<td>93.43</td>
<td>95.7</td>
<td>60.54</td>
</tr>
<tr>
<td>LatticeLSTM</td>
<td>91.89</td>
<td>93.43</td>
<td>95.7</td>
<td>81.48</td>
</tr>
<tr>
<td>Proposed</td>
<td>95.89</td>
<td>95.37</td>
<td>93.29</td>
<td>67.35</td>
</tr>
<tr>
<td>BERT-base</td>
<td>94.99</td>
<td>95.37</td>
<td>93.29</td>
<td>69.95</td>
</tr>
</tbody>
</table>
Conclusion

• We extend the sequential LM objective to a lattice language modeling objective

• We propose a 2-stage framework for learning contextualized representations of lattices efficiently

• Experiments on various SLU tasks show that our proposed framework provides consistent improvements
Thanks for listening!

Code available at https://github.com/MiuLab/Lattice-ELMo

Chao-Wei Huang
r07922069@ntu.edu.tw

Yun-Nung (Vivian) Chen
y.v.chen@ieee.org