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Language Empowering Intelligent Assistants

Apple Siri (2011) Google Now (2012)

Google Home (2016)

Microsoft Cortana

(2014)

Amazon Alexa/Echo (2014)

Google Assistant (2016)

Apple HomePod (2017) Facebook Portal (2019)
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Task-Oriented Dialogue Systems (Young, 2000)

Speech 
Recognition

Language Understanding (LU)
• Domain Identification
• User Intent Detection
• Slot Filling

Dialogue Management (DM)
• Dialogue State Tracking (DST)
• Dialogue Policy

Natural Language 
Generation (NLG)

Hypothesis
are there any action movies to 
see this weekend

Semantic Frame
request_movie
genre=action, date=this weekend

System Action/Policy
request_location

Text response
Where are you located?

Text Input
Are there any action movies to see this weekend?

Speech Signal

Database
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Recent Advances in NLP

◉ Contextual Embeddings (ELMo & BERT)
○ Boost many understanding performance with 

pre-trained language models

?
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Lift all lights to Morocco

List all flights tomorrow
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Mismatch between Written and Spoken Languages

◉ Goal: ASR-Robust Contextualized Embeddings

✓ learning spoken contextualized word embeddings

✓ better performance on spoken language understanding tasks

Training

• Written language

Testing

• Spoken language

• Include recognition errors
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Solution: LatticeLM

(Huang & Chen, ACL 2020)

Chao-Wei Huang and Yun-Nung Chen, “Learning Spoken Language Representations with Neural Lattice Language Modeling,” 

in Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL), 2020.
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ASR Lattices for Preserving Uncertainty

◉ Idea: lattices may include correct words

<s> cheapest airfare

fair

affair

air

to Milwaukee </s>
1

0.4

0.3

0.3

1

1

1

1

1 1

LatticeRNN

helps

LM pre-training

helps

(Ladhak, et al., 2016)

Chao-Wei Huang and Yun-Nung Chen, “Learning Spoken Language Representations with Neural Lattice Language Modeling,” 

in Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL), 2020.
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Lattice Language Modeling

1) LatticeLSTM encodes nodes of a lattice

2) The goal is to predict the outgoing 

transitions (words) given a node’s 

representation

◉ The one-hypothesis lattice reduces to 

normal language modeling

the, 1.0

LatticeLSTM

0.8

0.2

Linear

0.9 1.0 1.0

0.1

1.0 1.0

Chao-Wei Huang and Yun-Nung Chen, “Learning Spoken Language Representations with Neural Lattice Language Modeling,” 

in Proceedings of The 58th Annual Meeting of the Association for Computational Linguistics (ACL), 2020.

Issue: LatticeLSTM runs prohibitively slow
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Efficient Two-Stage Pre-Training

LSTM LSTM LSTM

What a day

Linear

a day <EOS>

Stage 1: Pre-Training 

on Sequential Texts

LatticeLSTM

the, 1.0

LatticeLSTM

Max pooling

classification

Fine-Tuning

the, 1.0

0.8
0.2

Linear

0.9 1.0 1.0

0.1

1.0 1.0

Stage 2: Pre-Training on Lattices

LatticeLSTM
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Spoken Language Understanding Results

◉ Intent Prediction
○ Word Error Rate: 45.6% (SNIPS); 15.6% (ATIS)

80 85 90 95 100

ATIS

SNIPS

1-Best

1-Best

1-Best + 

1-Best + 

LatticeLSTM

LatticeLSTM
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Spoken Language Understanding Results

◉ Dialogue Act Prediction
○ Word Error Rate: 32.0% (MRDA); 28.4% (SWDA)

50 55 60 65 70 75

SWDA

MRDA

1-Best

1-Best + 

LatticeLSTM

LatticeLM

1-Best

1-Best + 

LatticeLSTM

LatticeLM
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What if we do not have ASR lattices? 
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Solution:
Learning ASR-Robust Embeddings

(Huang & Chen, ICASSP 2020)

Chao-Wei Huang and Yun-Nung Chen, “Learning ASR-Robust Contextualized Embeddings for Spoken Language 

Understanding,” in The 45th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.
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ASR-Robust Contextualized Embeddings

Chao-Wei Huang and Yun-Nung Chen, “Learning ASR-Robust Contextualized Embeddings for Spoken Language 

Understanding,” in The 45th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.

◉ Confusion-Aware Fine-Tuning

○ Supervised

○ Unsupervised
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Spoken Language Understanding Results

◉ Airline Traveling Information System (ATIS)

○ Word Error Rate: 16.4%

90 91 92 93 94 95 96 97 98 99

Intent

Slot

Chao-Wei Huang and Yun-Nung Chen, “Learning ASR-Robust Contextualized Embeddings for Spoken Language 

Understanding,” in The 45th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.
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Spoken Language Understanding Results

◉ Airline Traveling Information System (ATIS)

○ Word Error Rate: 16.4%

90 91 92 93 94 95 96 97 98 99

Intent

Slot
+ LM fine-tuning

+ LM fine-tuning

Chao-Wei Huang and Yun-Nung Chen, “Learning ASR-Robust Contextualized Embeddings for Spoken Language 

Understanding,” in The 45th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.
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Spoken Language Understanding Results

◉ Airline Traveling Information System (ATIS)

○ Word Error Rate: 16.4%

90 91 92 93 94 95 96 97 98 99

Intent

Slot
+ LM fine-tuning

+ LM fine-tuning

+ LM + Confusion (Supervised)

+ LM + Confusion (Supervised)

Chao-Wei Huang and Yun-Nung Chen, “Learning ASR-Robust Contextualized Embeddings for Spoken Language 

Understanding,” in The 45th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.
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Spoken Language Understanding Results
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90 91 92 93 94 95 96 97 98 99

Intent

Slot
+ LM fine-tuning

+ LM fine-tuning

+ LM + Confusion (Supervised)

+ LM + Confusion (Supervised)

+ LM + Confusion (Unsupervised)

+ LM + Confusion (Unsupervised)

Chao-Wei Huang and Yun-Nung Chen, “Learning ASR-Robust Contextualized Embeddings for Spoken Language 

Understanding,” in The 45th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.
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Task-Oriented Dialogue Systems (Young, 2000)

Speech 
Recognition

Language Understanding (LU)
• Domain Identification
• User Intent Detection
• Slot Filling

Dialogue Management (DM)
• Dialogue State Tracking (DST)
• Dialogue Policy

Natural Language 
Generation (NLG)
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Semantic Frame
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Text response
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Text Input
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Speech Signal
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Natural Language Understanding (NLU)

◉ Parse natural language into structured semantics

NLU

Natural Language

McDonald’s is a cheap restaurant 

nearby the station. 

Semantic Frame

RESTAURANT=“McDonald’s”

PRICE=“cheap”

LOCATION= “nearby the station”
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Natural Language Generation (NLG)

◉ Construct natural language based on structured semantics

Natural Language

McDonald’s is a cheap restaurant 

nearby the station. 

Semantic Frame

RESTAURANT=“McDonald’s”

PRICE=“cheap”

LOCATION= “nearby the station”

NLG

26



Duality between NLU and NLG

Natural Language

McDonald’s is a cheap restaurant 

nearby the station. 

Semantic Frame

RESTAURANT=“McDonald’s”

PRICE=“cheap”

LOCATION= “nearby the station”

NLG

NLU

How can we leverage this dual relationship?
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Solution: 
Dual Supervised Learning for NLU & NLG

(Su et al., ACL 2019)

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding 

and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
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DSL: Dual Supervised Learning (Xia et al., 2017)

◉ Proposed for machine translation

◉ Consider two domains 𝑋 and 𝑌, and two tasks 𝑋 → 𝑌 and 𝑌 → 𝑋

𝑋 𝑌

𝜽𝒚→𝒙

𝜽𝒙→𝒚

We have 𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑦)𝑃 𝑦 = 𝑃 𝑦 𝑥)𝑃(𝑥)

Ideally 𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑦; 𝜽𝒚→𝒙)𝑃 𝑦 = 𝑃 𝑦 𝑥; 𝜽𝒙→𝒚)𝑃(𝑥)
Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., & Liu, T. Y., “Dual supervised learning,” in Proc. of the 34th International Conference on Machine 

Learning, 2017.
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Dual Supervised Learning

◉ Exploit the duality by forcing models to follow the probabilistic constraint 

𝑃 𝑥 𝑦; 𝜽𝒚→𝒙)𝑃 𝑦 = 𝑃 𝑦 𝑥; 𝜽𝒙→𝒚)𝑃(𝑥)

Objective function

ቐ
min𝜃𝑥→𝑦𝔼 𝑙1(𝑓 𝑥; 𝜃𝑥→𝑦 , 𝑦)

min𝜃𝑦→𝑥𝔼 𝑙2(𝑔 𝑦; 𝜃𝑦→𝑥 , 𝑥)

+ 𝜆𝑥→𝑦 𝑙𝑑𝑢𝑎𝑙𝑖𝑡𝑦

+ 𝜆𝑦→𝑥 𝑙𝑑𝑢𝑎𝑙𝑖𝑡𝑦

How to model the marginal distributions of 𝑋 and 𝑌? 

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., & Liu, T. Y., “Dual supervised learning,” in Proc. of the 34th International Conference on Machine 

Learning, 2017.
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Dual Supervised Learning

◉ Let’s go back to NLU and NLG

Natural Language

McDonald’s is a cheap restaurant 

nearby the station. 

Semantic Frame

RESTAURANT=“McDonald’s”

PRICE=“cheap”

LOCATION= “nearby the station”

NLG

NLU

Natural Language

X
Semantic Frame

Y

log෡𝑷(𝒙) log෡𝑷(𝒚)

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding 

and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
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Natural Language log ෠𝑃(𝑥)

◉ Language modeling

GRU

𝑥𝑑−1

𝑃 𝑥𝑑 𝑥1, … , 𝑥𝑑−1)

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding 

and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
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Semantic Frame log ෠𝑃(𝑦)

◉ We treat NLU as a multi-label classification problem

◉ Each label is a slot-value pair

RESTAURANT=“McDonald’s”

PRICE=“cheap”

LOCATION= “nearby the station”

0

1

.

.

.

0

1

How to model the marginal distributions of 𝑦? 
Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding 

and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
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Semantic Frame log ෠𝑃(𝑦)

◉ Naïve approach
○ Calculate prior probability for each label ෠𝑃(𝑦𝑖) on the training set.

○ ෠𝑃 𝑦 = ς ෠𝑃(𝑦𝑖)

Assumption: labels are independent

Restaurant: “McDonald’s”

Restaurant: “KFC”

Restaurant: “PizzaHut”

Price: “cheap”

Price: “expensive”

Food: “Pizza”

Food: “Hamburger”

Food:”Chinese”

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding 

and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
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Semantic Frame log ෠𝑃(𝑦)

◉ Masked autoencoder for distribution estimation (MADE)

2 1 3

1 2 2 1

2 1 3

Introduce sequential dependency among 

labels by masking certain connections

→ marginal distribution of 𝑦

Germain, M., Gregor, K., Murray, I., & Larochelle, H., “MADE: Masked autoencoder for distribution estimation,” 

in Proceedings of International Conference on Machine Learning, 2015.
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GRU

McDonald’s is

…

station

Linear

0

1

.

.

.

0

1

NLU

GRU

<BOS> McDonald’s

…

station

NLG
0

1

.

.

.

0

1

McDonald’s is <EOS>

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding 

and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
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NLU/NLG Results

◉ E2E NLG data: 50k examples in the restaurant domain

◉ NLU: F-1 score; NLG: BLEU, ROUGE

50 55 60 65 70 75

F1

BLEU

ROUGE-1

NLG Baseline

NLG Baseline

NLU Baseline
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Summary

◉ Robustness: spoken language embeddings are needed for better 

conversational AI 

○ Written texts enough for pre-training embeddings

○ Mismatch when applying to spoken language

1) LatticeLM for preserving uncertainty

2) Adapting contextualized embeddings robust to misrecognition

◉ Scalability: leveraging the duality of NLU and NLG

○ Apply dual learning to leverage the duality

○ Data distribution property is important

○ Better performance and flexibility for diverse NLU/NLG models
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◉ Yun-Nung (Vivian) Chen
◉ Assistant Professor, National Taiwan University

◉ y.v.chen@ieee.org / http://vivianchen.idv.tw
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