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Abstract 

This paper presents a novel learning algorithm for efficient construction of the radial basis function 

(RBF) networks that can deliver the same level of accuracy as the support vector machines (SVM) 

in data classification applications.  The proposed learning algorithm works by constructing one 

RBF sub-network to approximate the probability density function of each class of objects in the 

training data set.  With respect to algorithm design, the main distinction of the proposed learning 

algorithm is the novel kernel density estimation algorithm that features an average time complexity 

of O(nlogn), where n is the number of samples in the training data set.  One important advantage 

of the proposed learning algorithm, in comparison with the SVM, is that the proposed learning 

algorithm generally takes far less time to construct a data classifier with an optimized parameter 

setting.  This feature is of significance for many contemporary applications, in particular, for 

those applications in which new objects are continuously added into an already large database.  



 

Another desirable feature of the proposed learning algorithm is that the RBF network constructed 

is capable of carrying out data classification with more than two classes of objects in one single 

run.  In other words, unlike SVM, it does not need to invoke mechanisms such as one-against-one 

or one-against-all for handling datasets with more than two classes of objects.  The comparison 

with SVM is of particular interest, because it has been shown in a number of recent studies that 

SVM generally are able to deliver higher level of accuracy than the other existing data 

classification algorithms.  As the proposed learning algorithm is instance-based, the data 

reduction issue is also addressed in this paper.  One interesting observation in this regard is that, 

for all three data sets used in data reduction experiments, the number of training samples remaining 

after a naïve data reduction mechanism is applied is quite close to the number of support vectors 

identified by the SVM software.  This paper also compares the performance of the RBF networks 

constructed with the proposed learning algorithm and those constructed with a conventional 

cluster-based learning algorithm.  The most interesting observation learned is that, with respect to 

data classification, the distributions of training samples near the boundaries between different 

classes of objects carry more crucial information than the distributions of samples in the inner parts 

of the clusters. 

 

Key terms: radial basis function (RBF) network, kernel density estimation, data classification, 

machine learning, neural network. 
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1. Introduction 

The radial basis function (RBF) network is a special type of neural networks with several 

distinctive features [21, 23, 27].  Since its first proposal, the RBF network has attracted a high 

degree of interest in research communities.  A RBF network consists of three layers, namely the 

input layer, the hidden layer, and the output layer.  The input layer broadcasts the coordinates of 

the input vector to each of the units in the hidden layer.  Each unit in the hidden layer then 

produces an activation based on the associated radial basis function.  Finally, each unit in the 

output layer computes a linear combination of the activations of the hidden units.  How a RBF 

network reacts to a given input stimulus is completely determined by the activation functions 

associated with the hidden units and the weights associated with the links between the hidden layer 

and the output layer. 

RBF networks have been exploited in many applications and quite a few learning algorithms 

have been proposed [5, 7, 8, 17, 19, 27, 29, 31, 32].  The problems that RBF networks have been 

applied to include function approximation, data classification, and data clustering.  Depending on 

the problems that the learning algorithms are designed for, different optimization criteria may be 

employed. 

One of the main applications that RBF networks have been applied to is data classification.  

However, latest development in data classification research has focused more on support vector 

machines (SVM) [13] than on RBF networks, because several recent studies have reported that 

SVM generally are able to deliver higher classification accuracy than the other existing data 

classification algorithms [16, 18, 20].  Nevertheless, SVM suffer one serious drawback.  That is, 

the time taken to carry out model selection could be unacceptably long for some contemporary 

applications, in particular, for those applications in which new objects are continuously added into 

an already large database.  Therefore, how to expedite the model selection process has become a 

critical issue for SVM and has been addressed by a number of recent articles [11, 14, 15, 22].  

However, the approaches that have been proposed so far for expediting the model selection process 
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of SVM all lead to lower prediction accuracy.  Anyway, this is an issue that deserves continuous 

investigation.  Another minor drawback of SVM is that mechanisms such as one-against-one or 

one-against-all must be invoked to handle datasets with more than two classes of objects. 

In this paper, a novel learning algorithm is proposed for efficient construction of the RBF 

networks that can deliver the same level of accuracy as SVM in data classification applications 

without suffering the drawbacks of SVM addressed above.  In the RBF networks constructed with 

the proposed learning algorithm, each activation function associated with the hidden units is a 

spherical (or symmetrical) Gaussian function.  In some articles, the specific type of RBF 

networks with spherical Gaussian functions is referred to as the spherical Gaussian RBF network 

[33].  For simplicity, we will use spherical Gaussian function (SGF) networks to refer to the RBF 

networks constructed with the learning algorithm proposed in this paper.  With respect to 

algorithm design, the main distinction of the proposed learning algorithm is the novel kernel 

density estimation algorithm designed for efficient construction of the SGF network.  The main 

properties of the proposed learning algorithm are summarized as follow: 

(i) the SGF network constructed with the proposed learning algorithm generally delivers the same 

level of classification accuracy as the SVM; 

(ii) the average time complexity for constructing an SGF network is bounded by O(n log n), where 

n is total number of training samples; 

(iii) the average time complexity for classifying n' incoming objects is bounded by O(n' log n). 

(iv) the SGF network is capable of carrying out data classification with more than two classes of 

objects in one single run.  That is, unlike the SVM, the SGF network does not need to 

incorporate mechanisms such as one-against-one or one-against-all for handling data sets with 

more than two classes of objects. 

As the SGF network constructed with the proposed learning algorithm is instance-based, the 

efficiency issue shared by almost all instance-based learning algorithms must be addressed.  That 

is, a data reduction mechanism must be employed to remove redundant samples in the training data 
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set in order to improve the efficiency of the instance-based classifier.  Experimental results reveal 

that the naïve data reduction mechanism employed in this paper is able to reduce the size of the 

training data set substantially with a slight impact on classification accuracy.  One interesting 

observation is that, in the three data sets used in experiments, the number of training samples 

remaining after data reduction is applied and the number of support vectors identified by the SVM 

software are in the same order.  In fact, in two out of the three cases reported in this paper, the 

difference is less than 15%.  Since data reduction is a crucial issue for instance-based learning 

algorithms, further study on this issue should be conducted. 

This paper also compares the performance of the SGF networks constructed with the proposed 

learning algorithm and the RBF networks constructed with a conventional cluster-based learning 

algorithm [19].  The most interesting observation learned is that, with respect to data 

classification, the distributions of samples near the boundaries between different classes of objects 

carry more crucial information than the distributions of samples in the inner parts of the clusters.  

Since the conventional cluster-based learning algorithm for RBF networks places one radial basis 

function at the center of a cluster, the distributions of samples near the boundaries between 

different classes of objects may not be accurately modeled.  As a result, the RBF network 

constructed with the conventional cluster-based learning algorithm in general is not able to deliver 

the same level of accuracy as those data classification algorithms such as SVM and the SGF 

network that exploit the distributions of samples near the boundaries between different classes of 

objects. 

In the following part of this paper, section 2 presents a review of the related works.  Section 3 

presents an overview of how data classification is conducted with the proposed learning algorithm.  

Section 4 elaborates the novel kernel density estimation algorithm on which the proposed learning 

algorithm is based.  Section 5 discusses the implementation issues and presents an analysis of 

time complexity.  Section 6 reports the experiments conducted to evaluate the performance of the 

proposed learning algorithm.  Finally, concluding remarks are presented in section 7. 
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2. Related Works 

As mentioned earlier, there have been quite a few learning algorithms proposed for RBF networks.  

The learning algorithm determines the number of units in the hidden layer, the activation functions 

associated with the hidden units, and the weights associated with the links between the hidden and 

output layers.  Learning algorithms designed for different applications may employ different 

optimization criteria.  The general mathematical form of the output units in a RBF network is as 

follows: 

∑
=

=
h

i
ijij rwf

1
, )()( xx

)
, 

where jf
)

 is the function corresponding to the j-th output unit and is a linear combination of h 

radial basis functions r1, r2, …, rh.  Basically, there are two categories of learning algorithms 

proposed for RBF networks [8, 27, 29].  The first category of learning algorithms simply places 

one radial basis function at each sample [28].  On the other hand, the second category of learning 

algorithms attempts to reduce the number of hidden units in the network, or equivalently the 

number of radial basis functions in the linear function above [12, 19, 24, 26, 25].  One primary 

motivation behind the design of the second category of algorithms is to improve the efficiency of 

the learning process, as the conventional approaches employed to figure out the optimal parameter 

settings for the RBF network involve computing the inverse of a matrix with dimension equal to 

the number of hidden units in the network. 

As mentioned earlier, one of the main applications of RBF networks is data classification. 

Most learning algorithms proposed for constructing RBF network based classifiers conduct a 

clustering analysis on the training data set and allocate one hidden unit for each cluster [8, 17, 19, 

25].  Algorithms differ by the clustering algorithm employed and how the parameters of the RBF 

network are set.  The cluster-based approaches effectively improve the efficiency of the learning 

algorithm and reduce the complexity of the RBF network constructed.  However, because the 
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cluster-based approaches typically place one radial basis function at the center of each cluster, the 

distributions of training samples near the boundaries between different classes of objects may not 

be accurately modeled.  As the experimental results presented in section 6 of this paper reveals, 

with respect to data classification, the distributions of samples near the boundaries between 

different classes of objects carry more crucial information than the distributions of samples in the 

inner parts of the clusters.  As a result, the RBF network constructed with a conventional 

cluster-based learning algorithm generally is not able to deliver the same level of accuracy as those 

data classification algorithms such as SVM and the SGF netowrk that exploit the distributions of 

samples near the boundaries between different classes of objects. 

In this paper, a novel learning algorithm for constructing SGF networks is presented.  The 

mathematical treatment presented in this paper for the derivation of the learning algorithm is 

different from our previous work [].  Nevertheless, both treatments exploit essentially the same 

idea and result in the same equations. 

 

3. Overview of Data Classification with the Proposed Learning Algorithm 

This section presents an overview of how data classification is conducted with the SGF networks 

constructed with the proposed learning algorithm.  The details of the learning algorithms will be 

elaborated in the next section. 

 Assume that the objects of concern are distributed in an m-dimensional vector space and let fj 

denote the probability density function that corresponds to the distribution of class-j objects in the 

m-dimensional vector space.  The proposed learning algorithm constructs one SGF sub-network 

for approximating the probability density function of one class of objects in the training data set.  

In the construction of the SGF network, the learning algorithm places one spherical Gaussian 

function at each training sample.  The general form of the SGF network based function 

approximators is as follows:  
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where  

(i) jf̂  is the SGF network based function approximator for class-j training samples; 

(ii) v is a vector in the m-dimensional vector space; 

(iii) Sj is the set of class-j training samples; 

(iv) ||v − si|| is the distance between vectors v and si; 

(v) wi and σi are parameters to be set by the learning algorithm. 

With the SGF network based function approximators, a new object located at v with unknown 

class is predicted to belong to the class that gives the maximum value of the likelihood function 

defined in the following: 

)(ˆ
||
||

)( vv j
j

j f
S
S

L = , 

where Sj is the set of class-j training samples and S is the set of training samples of all classes. 

The essential issue of the learning algorithm is to construct the SGF network based function 

approximators.  In the next section, the novel kernel density estimation algorithm designed for 

efficient construction of the SGF network will be presented.  For the time being, let us address 

how to estimate the value of the probability density function at a training sample.  Assume that 

the sampling density is sufficiently high.  Then, by the law of large numbers in statistics [30], we 

can estimate the value of the probability density function fj(⋅) at a class-j sample si as follows: 
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where 

(i) R(si) is the maximum distance between si and its k1 nearest training samples of the same class; 
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(ii) 
)1

)( 2

+(Γ 2
m

m m

R πis
 is the volume of a hypersphere with radius R(si) in an m-dimensional vector 

space; 

(iii) Γ(⋅) is the Gamma function [1]; 

(iv) k1 is a parameter to be set either through cross validation or by the user. 

In equation (2), R(si) is determined by one single training sample and therefore could be unreliable, 

if the data set is noisy.  In our implementation, we use )( isR  defined in the following to replace 

R(si) in equation (2), 

⎟
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where 
121 ksss ˆ ..., ,ˆ ,ˆ  are the k1 nearest training samples of the same class as si.  The basis of 

employing )( isR  is elaborated in Appendix A. 

 

4. The Proposed Kernel Density Estimation Algorithm 

This section elaborates the efficient kernel density estimation algorithm for construction of the 

SGF network based function approximators.  In fact, the proposed kernel density estimation 

algorithm is derived with some ideal assumptions.  Therefore, some sort of adaptation must be 

employed, if the target data set does not conform to these assumptions.  In this section, we will 

first focus on the derivation of the kernel density estimation algorithm, provided that these ideal 

assumptions are valid.  The adaptation employed in this paper will be addressed later. 

Assume that we now want to derive an approximate probability density function for the set of 

class-j training samples.  The proposed kernel density estimation algorithm places one spherical 

Gaussian function at each sample as shown in equation (1).  The challenge now is how to figure 

out the optimal wi and σi values of each Gaussian function.  For a training sample si, the learning 

algorithm first conducts a mathematical analysis on a synthesized data set.  The synthesized data 
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set is derived from two ideal assumptions and serves as an analogy of the distribution of class-j 

training samples in the proximity of si.  The first assumption is that the sampling density in the 

proximity of si is sufficiently high and, as a result, the variation of the probability density function 

at si and the neighboring class-j samples approaches 0.  The second assumption is that si and the 

neighboring class-j samples are evenly spaced by a distance determined by the value of the 

probability density function at si.  Fig. 1 shows an example of the synthesized data set for a 

training sample in a 2-dimensional vector space.  The details of the model are elaborated in the 

following. 

(i) Sample si is located at the origin and the neighboring class-j samples are located at (h1δi, 

h2δi, …, hmδi), where h1, h2, …, hm are integers and δi is the average distance between two 

adjacent class-j training samples in the proximity of si.  How δi is determined will be 

addressed later on. 

(ii) The values of the probability density function at all the samples in the synthesized data set, 

including si, are all equal to fj(si).  The value of fj(si) is estimated based on equation (2) in 

section 3. 

 

iδ

iδ
is

 
Fig. 1. An example of the synthesized data set for a training sample in a 2-dimensional vector 

space. 
 

The proposed kernel density estimation algorithm begins with an analysis on the synthesized 

data set to figure out the values of wi and σi that make function gi(⋅) defined in the following 
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virtually a constant function equal to fj(si), 
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In other words, the objective is to make gi(x) a good approximator of fj(x) in the proximity of si. 
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where x = (x1, x2, …, xm).  It is shown in Appendix B that, if σi =δi, then q(y) is bound by 

2.5066282745 ± 1.34 × 10−8.  Therefore, with σi =δi, gi(x) defined in equation (3) is virtually a 

constant function.  In fact, we can apply basically the same procedure presented in Appendix B to 

find the upper bounds and lower bounds of q(y) with alternative 
i

i

δ
σ  ratios.  As Table 1 reveals, 

the bounds of q(y) becomes tighter, if 
i

i

δ
σβ =  is set to a larger value.   However, the tightness 

of the bounds of q(y) is not the only concern with respect to choosing the appropriate β value.  

We will discuss another effect to consider later. 

 

i

i

δ
σβ =  Bounds of q(y) 

0.5 1.253314144 ± 1.80 × 10−2



 

 10

1.0 2.506628275 ± 1.34 × 10−8

1.5 3.759942412 ± 2.94 × 10−11

Tab. 1: The bounds of function q(y) defined in equation (4) with alternative 
i

i

δ
σ  ratios. 

As it has been shown that, with an appropriate 
i

i

δ
σ  ratio, gi(x) defined in equation (3) is 

virtually a constant function, the next thing to do is to figure out the appropriate value of wi that 

makes equation (3) satisfied.  We have 
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where 
i

i

δ
σ

β = .  Therefore, we need to set wi as follows, in order to make gi(x) a good 

approximator of fj(x) in the proximity of si: 
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If we employ equation (2) to estimate the value of fj(si), then we have 
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So far, we have figured out that if we employ an appropriate ratio of 
i

i

δ
σ

β =  and set wi 

according to equation (7), we can make gi(x) a good approximator of fj(x) in the proximity of si.  

The only remaining issue is to derive a closed form of σi.  In this paper, δi is set to the average 

distance between two adjacent class-j training samples in the proximity of sample si.  In an 

m-dimensional vector space, the number of uniformly distributed samples, N, in a hypercube with 

volume V can be computed by m
VN
α

≅ , where α is the spacing between two adjacent samples.  
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Accordingly, we set 
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Finally, with equations (7) and (8) incorporated into equation (1), we have the following 

approximate probability density function for class-j training samples: 
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(i) v is a vector in the m-dimensional vector space, 

(ii) Sj is the set of class-j training samples, 
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In our study, we have observed that, regardless of the value of β, we have 

βπ
β

λ ⋅≅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑

∞

−∞=

2
2

exp 2

2

h

h
.  If this observation can be proved to be generally correct, then 

we can further simplify equation (9) and obtain 
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5. Implementation Issues and Analysis of Time Complexity 

This section discusses the issues concerning implementation of the novel kernel density estimation 

algorithm proposed in the previous section and presents an analysis of time complexity.  Fig. 2 

summarizes the discussion so far by showing the detailed steps taken to create an SGF network 

based data classifier and how the SGF network works.  In procedure make_classifier presented in 

Fig. 2, it is assumed that the optimal values of the three parameters listed in Table 2 have been 

determined through cross validation.  In the later part of this section, we will examine the cross 

validation issue. 

 
k1 The parameter in equation (2). 

k2 

The number of nearest training samples included in evaluating the values 

of the approximate probability density functions at an input vector 

according to equation (9) or (10). 

m̂  The parameter that substitutes for m in equations (2) and (7)-(10). 

Table 2. The parameters to be set through cross validation for the SGF network. 
 

With respect to the pseudo-codes presented in Fig. 2, there are several practical issues to 

address. The first issue concerns the two ideal assumptions on which the derivation of equations (9) 

and (10) is based, i.e. the assumptions from which Fig. 1 is derived. If the target data set does not 

conform to these assumptions, then some sort of adaptation must be employed. The practice 

employed in this paper is to incorporate parameter m̂  in Table 2. In equations (2) and (7)-(10), 

parameter m is supposed to be set to the number of attributes of the objects in the data set.  

However, because the local distributions of the training samples may not spread in all dimensions 

and some attributes may even be correlated, we replace m in these equations by m̂ , which is to be 

set through cross validation. In fact, the process conducted to figure out the optimal value of m̂  

also serves to tune wi and σi, as we also replace m in equations (7) and (8) by m̂ . 
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Procedure make_classifier 
Input: a set of training samples S = {s1, s2, …, sn}; 
 parameter values of k1, k2, and m̂  listed in Table 2; parameter value of β. 
Output: an SGF network. 
Begin 
 for each class of training samples { 
  let Sj be the set of class-j training samples and construct a kd-tree for Sj; 
  for each si ∈ Sj { 

   let 
121 ksss ˆ ..., ,ˆ ,ˆ  be the k1 nearest training samples of the same class as si; 
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⎞
⎜⎜
⎝

⎛
−

+
= ∑

=

1

11

||ˆ||1
ˆ

1ˆ
)(

k

hkm
mR ihi sss ; 

   compute 
m mi k

R
ˆ

2
ˆ

1 )1()1(
)(

+Γ+
=

πβσ is ; 

  } 

  compute the approximate value of ∑
∞

−∞=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

h

h
2

2

2
exp

β
λ ; 

  construct an SGF sub-network with the following output function: 

   ∑
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

=
jS i

m

ij
j S

f
is

isvv 2

2ˆ

2
||||exp

||
1)(ˆ

σσλ
β ; 

 } 
end 

Fig. 2. The pseudo codes of the proposed learning algorithm and the SGF network based classifier. 

(to be continued) 

Procedure predict 

Input: an SGF network constructed with the procedure presented in Procedure make_classifier; 

 an input object with coordinate v; 

Output: a prediction of the class of the input object; 

Begin 

 let 
221 ksss ˆ ..., ,ˆ ,ˆ  be the k2 nearest samples of v in the training data set; 
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 max = 0; 

 for each SGF sub-network corresponding to one class of training samples { 

  let Tj be the subset of {
221 ksss ˆ ..., ,ˆ ,ˆ } that consists of class-j training samples; 

  compute the approximate value of )(ˆ
||
||

)( vv j
j

j f
S
S

L =  with 

  ∑
∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

≅
jT i

m

ij
j S

f
is

isvv 2

2ˆ

2
||||exp

||
1)(ˆ

σσλ
β ; 

  if (Lj(v) > max) then class = j; 

 } 

 return (class); 

end 

Fig. 2. The pseudo codes of the proposed learning algorithm and the SGF network based classifier. 
(continues) 

 

Another parameter in Table 2 and Fig. 2 that needs to address is k2.  Since the influence of a 

Gaussian function decreases exponentially as the distance increases, when computing the values of 

the approximate probability density functions at a given vector v according to equations (9) or (10), 

we only need to include a limited number of nearest training samples of v.  The number of nearest 

training samples to be included can be determined through cross validation and is denoted by k2. 

There is one more practical issue to address.  In earlier discussion, we mentioned that there is 

another aspect to consider in selecting the 
i

i

δ
σ

β =  ratio, in addition to the tightness of the bounds 

of function q(y) defined in equation (4).  If we examine equations (9) and (10), we will find that 

the value of the approximation function at a sample si, i.e. )(ˆ
isjf , is actually a weighted average 

of the estimated sample densities at si and at its nearby samples of the same class.  Therefore, a 

smoothing effect will result.  A larger 
i

i

δ
σ

β =  ratio implies that the smoothing effect will be 

more significant.  Therefore, it is of interest to investigate the effect of β.  Our experience 
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suggests that, as long as β is set to a value within [0.6, 2], the value of β has no significant effect 

on classification accuracy.  Therefore, β is not included in Table 2. 

As far as the time complexities of the algorithms presented in Fig. 2 are concerned, there are 

two separate issues.  The first issue concerns the time taken to create an SGF network with n 

training samples and the second issue concerns the time taken to classify n' objects with the SGF 

network.  In both issues, we need to identify the nearest neighbors of a sample.  In our 

implementation, the kd-tree structure is employed [6], which is a data structure widely used to 

search for the nearest neighbors.  With this practice, the average time complexity for constructing 

a kd-tree with n training samples is O(n log n).  In procedure make_classifier presented in Fig. 2, 

we need to construct c kd-trees, if the training data set contains c classes of samples.  Therefore, 

the average time complexity of this task is bounded by O(cn log n).  Then, we need to identify the 

k1 nearest neighbors for each of the n training samples and the average time complexity of this task 

is bounded by O(k1n log n).  As the two tasks addressed above dominate the time complexity of 

procedure make_classifier, the overall time complexity for the procedure is O(cn log n + k1n log n), 

or O(n log n), if both c and k1 are regarded as constants. 

In procedure predict presented in Fig. 2, the time complexity for classifying an incoming 

object is dominated by the work to identify k2 nearest training samples of the incoming object.  

Therefore, the average time complexity for classifying one object is bounded by O(k2 log n) and 

the overall time complexity for classifying n' incoming objects is bounded by O(k2n' log n) or O(n' 

log n), if k2 is treated as a constant. 

In the discussion above, it is assumed that the optimal values for the parameters listed in Table 

2 have been determined through cross validation, before procedure make_classifier.  If a k-fold 

cross validation process is conducted [35], then for each possible combination of parameter values 

we need to construct one SGF network based on a subset of training samples.  Then, we need to 

invoke procedure predict to figure out how good this particular combination of parameter values is.  

Based on the analysis of time complexity presented above, it is apparent that the average time 
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complexity of the cross validation process is bounded by O(n log n), if the number of possible 

combinations of parameter values is regarded as a constant. 

 

6. Experimental Results and Discussions 

The experiments reported in this section have been conducted to evaluate the performance of the 

SGF networks constructed with the learning algorithm proposed in this paper, in comparison with 

the alternative data classification algorithms.  The experiments focus on the following 3 issues: 

classification accuracy, execution efficiency, and the effect of data reduction.  The alternative data 

classification algorithms involved in the comparison include SVM, KNN [35], and the 

conventional cluster-based learning algorithm proposed in [19] for RBF networks.  The learning 

algorithm proposed in [19] conducts clustering analysis on the training data set and allocates one 

hidden unit for each cluster of training samples.  For simplicity, in the following discussion, we 

will use the conventional RBF network to refer to the data classifier constructed with the learning 

algorithm proposed in [19] and the SGF network to refer to the data classifier constructed with the 

learning algorithm proposed in this paper.  In these experiments, the SVM software used is 

LIBSVM [10] with the radial basis kernel and the one-against-one practice has been adopted for 

the SVM, if the data set contains more than 2 classes of objects. 

 

Data set # of training samples # of testing samples 

satimage 4435 2000 

letter 15000 5000 

shuttle 43500 14500 

(a). The three larger data sets. 

 

Data set # of samples

iris 150 

wine 178 
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vowel 528 

segment 2310 

glass 214 

vehicle 846 

(b). The six smaller data sets. 

Table 3. The benchmark data sets used in the experiments. 

 

Table 3 lists main characteristics of the 9 benchmark data sets used in the experiments.  All 

these data sets are from the UCI repository [9].  The collection of benchmark data sets is the same 

as that used in [18], except that DNA is not included.  DNA is not included, because it contains 

categorical data and an extension of the proposed learning algorithm is yet to be developed for 

handling categorical data sets.  Among the 9 data sets, three of them are considered as the larger 

ones, as each contains more than 5000 samples with separate training and testing subsets.  The 

remaining six data sets are considered as the smaller ones and there are no separate training and 

testing subsets in these 6 smaller data sets.  Accordingly, different evaluation practices have been 

employed for the smaller data sets and for the larger data sets.  For the 3 larger data sets, 10-fold 

cross validation has been conducted on the training set to determine the optimal parameter values 

to be used in the testing phase.  On the other hand, for the 6 smaller data sets, the evaluation 

practice employed in [18] has been adopted.  With this practice, 10-fold cross validation has been 

conducted on the entire data set and the best result is reported.  Therefore, the results reported 

with this practice just reveal the maximum accuracy that can be achieved, provided that a perfect 

cross validation mechanism is available to identify the optimal parameter values. 

In these experiments, β in equation (9) has been set to 0.7.  Our observation in this regard is 

that, as long as β is set to a value within [0.6, 2], then the value of β has no significant effect on 

classification accuracy.  On the other hand, parameters α and β in the conventional RBF network 
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proposed in [19] have been set to the heuristic values suggested by the authors, i.e. 1.05 and 5, 

respectively. 

 

Data sets Data classification algorithms 

 SGF network 
SVM

KNN with 

k = 1 

KNN with 

k = 3 

Conventional 

RBF network

1. satimage 92.30 

(k1 = 6, k2 = 26, m̂  = 1)
91.30 89.35 90.6 90.25 

2. letter 97.12 

(k1 = 28, k2 = 28, m̂  = 2)
97.98 95.26 95.46 91.16 

3. shuttle 99.94 

(k1 = 18, k2 = 1, m̂  = 3)
99.92 99.91 99.92 97.34 

Avg. 1-3 96.45 96.40 94.84 95.33 92.92 

Table 4. Comparison of classification accuracy with the 3 larger data sets. 

 

Table 4 compares the accuracy delivered by alternative classification algorithms with the 3 

larger benchmark data sets.  As Table 4 shows, the SGF network and the SVM basically deliver 

the same level of accuracy, which the KNN and the conventional RBF network are generally not 

able to match.  Table 5 lists the experimental results with the 6 smaller data sets.  Table 5 shows 

that the SGF network and the SVM basically deliver the same level of accuracy for 4 out of these 6 

data sets.  The two exceptions are glass and vehicle.  The results with these two data sets 

suggest that both the SGF network and the SVM have some blind spots, and therefore may not be 

able to perform as well as the other in some cases.  The experimental results presented in Table 5 

also show that the SGF network and the SVM generally deliver a higher level of accuracy than the 

KNN and the conventional RBF network. 

 

Data sets Data classification algorithms 
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 SGF network SVM KNN 

with k = 1 

KNN 

with k = 3 

Conventional RBF 

network 

1. iris 
97.33 

(k1 = 24, k2 = 14, m̂  = 5) 
97.33 94.0 94.67 95.33 

2. wine 
99.44 

(k1 = 3, k2 = 16, m̂  = 1) 
99.44 96.08 94.97 98.89 

3. vowel 
99.62 

(k1 = 15, k2 = 1, m̂  = 1) 
99.05 99.43 97.16 93.37 

4. segment 
97.27 

(k1 = 25, k2 = 1, m̂  = 1) 
97.40 96.84 95.98 94.98 

Avg. 1-4 98.42 98.31 96.59 95.70 95.64 

5. glass 
75.74 

(k1 = 9, k2 = 3, m̂  = 2) 
71.50 69.65 72.45 69.16 

6. vehicle 
73.53 

(k1 = 13, k2 = 8, m̂  = 2) 
86.64 70.45 71.98 78.25 

Avg. 1-6 90.49 91.89 87.74 87.87 88.33 

Table 5. Comparison of classification accuracy with the 6 smaller data sets. 

 

In the experiments that have been reported so far, no data reduction is performed in the 

construction of the SGF network.  As the learning algorithm proposed in this paper places one 

spherical Gaussian function at each training sample, removal of redundant training samples means 

that the SGF network constructed will contain fewer hidden units and will operate more efficiently.  

Table 6 presents the effect of applying a naïve data reduction algorithm to the 3 larger data sets. 

The naïve data reduction algorithm examines the training samples one by one in an arbitrary order.  

If the training sample being examined and all of its 10 nearest neighbors in the remaining training 

data set belong to the same class, then the training sample being examined is considered as 

redundant and will be deleted.  With this practice, training samples located near the boundaries 

between different classes of objects will be retained, while training samples located far away from 

the boundaries will be deleted.  As shown in Table 6, the naïve data reduction algorithm is able to 



 

 20

reduce the number of training samples in the shuttle data set substantially, with less than 2% of 

training samples left.  On the other hand, the reduction rates for satimage and letter are not as 

substantial.  It is apparent that the reduction rate is determined by the characteristics of the data 

set.  Table 6 also reveals that applying the naïve data reduction mechanism will lead to slightly 

lower classification accuracy.  Since the data reduction mechanism employed in this paper is a 

naïve one, there is room for improvement with respect to both reduction rate and impact on 

classification accuracy.  This is a subject under investigation. 

 

 satimage letter shuttle

# of training samples in the original data set 4435 15000 43500 

# of training samples after data reduction is applied 1815 7794 627 

% of training samples remaining 40.92% 51.96% 1.44%

Classification accuracy with the SGF network after data 

reduction is applied 
92.15% 96.18% 99.32%

Degradation of accuracy due to data reduction −0.15% −0.94% −0.62%

Table 6. Effects of applying a naïve data reduction mechanism. 

 

Table 7 compares the number of training samples remaining after data reduction is applied, the 

numbers of clusters identified by the conventional RBF network algorithm, and the number of 

support vectors identified by the SVM in the benchmark data sets.  There are several interesting 

observations.  First, for satimage and letter, the number of training samples remaining after data 

reduction is applied and the number of support vectors identified by the SVM are almost equal.  

For shuttle, though the difference is larger, the two numbers are still in the same order.  On the 

other hand, the number of clusters identified by the conventional RBF network algorithm is 

consistently much smaller than the number of training samples remaining after data reduction is 

applied and the number of support vectors identified by the SVM.  Our interpretation of these 

observations is that both the SVM and the naïve date reduction mechanism employed here attempt 
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to identify the training samples that are located near the boundaries between different classes of 

objects.  Therefore, the numbers with these two algorithms presented in Table 7 are almost equal 

or at least in the same order.  On the other hand, since multiple samples are needed to precisely 

describe the boundary of a cluster, the number of training samples remaining after data reduction is 

applied and the number of support vectors identified by the SVM are in general much larger than 

the number of clusters identified by the conventional RBF network algorithm.  The results 

reported in Table 7 along with the results presented in Table 4 and Table 5 also suggest that, with 

respect to data classification, the distributions of samples near the boundaries between different 

classes of objects carry more crucial information than the distributions of samples in the inner part 

of the clusters.  Since the conventional RBF network incorporates one radial basis function 

located at the geometric center of a cluster to model the distribution of the training samples inside 

the cluster, the accuracy delivered by the conventional RBF network is generally lower than that 

delivered by the SGF network and the SVM. 

 

 
# of training samples after 

data reduction is applied 

# of support vectors 

identified by LIBSVM

# of clusters identified by the 

conventional RBF network 

algorithm 

satimage 1815 1689 322 

letter 7794 8931 462 

shuttle 627 287 45 

Table 7. Comparison of the number of training samples remaining after data reduction is applied, 
the number of support vectors identified by the SVM software, and the number of clusters 

identified by the conventional RBF network algorithm. 

 

 

Table 8 compares the execution times of the SGF network, the SVM, and the conventional 

RBF network with the 3 larger data sets presented in Table 3.  In Table 8, the total times taken to 

construct classifiers based on the given training data sets are listed in the rows marked by 
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Make_classifier.  On the other hand, the times taken by alternative classifiers to predict the 

classes of the testing samples are listed in the rows marked by Prediction. 

 

  SGF network without data 

reduction 

SGF network with data 

reduction 
SVM 

Conventional 

RBF network 

satimage 676 303 64644 136 

letter 2842 1990 387096 712 
Make 

classifier 
shuttle 98540 773 467955 2595 

satimage 21.30 7.40 11.53 0.63 

letter 128.60 51.74 94.91 2.15 Prediction 

shuttle 996.10 5.85 2.13 0.48 

Table 8. Comparison of execution times in seconds. 

 

As Table 8 reveals, the time taken to construct an SVM classifier with the model selection 

process employed in [10] is substantially higher than the time taken to construct an SGF network 

or a conventional RBF network.  A detailed analysis reveals that it is the model selection process 

that dominates the time taken to construct an SVM classifier.  These results imply that the time 

taken to construct an SVM classifier with optimized parameter setting could be unacceptably long 

for some contemporary applications, in particular, for those applications in which new objects are 

continuously added into an already large database. 

The results in Table 8 also imply that, in dealing with those data sets such as satimage and 

letter that does not contain a high percentage of redundant training samples, the SGF network is 

favorable over the SVM.  In such cases, the SGF network enjoys substantially higher efficiency 

than the SVM in the make_classifier phase and is able to deliver the same level performance as 

the SVM in terms of both classification accuracy and the execution time in the prediction phase.  

On the other hand, if the data set contains a high percentage of redundant training samples such as 

shuttle, then data reduction must be applied for the SGF network or its efficiency in the 
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Prediction phase would suffer.  With data reduction employed, the execution time of the SGF 

network in the Prediction phase then is comparable with that of the SVM.  As the incorporation 

of the naïve data reduction mechanism may lead to slightly lower classification accuracy, it is of 

interest to develop advanced data reduction mechanisms. 

Table 8 also shows that the conventional RBF network generally enjoys higher efficiency in 

comparison with the SGF network with data reduction and the SVM in the prediction phase.  

This phenomenon is due to the fact shown in Table 7 that the number of clusters identified by the 

conventional RBF network algorithm for a data set is generally smaller than the number of training 

samples employed to construct the SGF network after data reduction and the number of support 

vectors identified by the SVM algorithm.  Nevertheless, as mentioned earlier, because the 

conventional cluster-based learning algorithm for RBF networks places one radial basis function at 

the center of each cluster, the distributions of the objects in the data set may not be accurately 

modeled.  As a result, the conventional RBF network in general is not able to deliver the same 

level of accuracy as the SVM and the SGF network, which exploit the distributions of training 

samples near the boundaries between different classes of objects. 

 

7. Conclusion 

In this paper, a novel learning algorithm for constructing SGF network based data classifiers is 

proposed.  With respect to algorithm design, the main distinction of the proposed learning 

algorithm is the novel kernel density estimation algorithm designed for efficient construction of the 

SGF networks.  The experiments presented in this paper reveal that the SGF networks constructed 

with the proposed learning algorithm generally achieve the same level of classification accuracy as 

SVM.  One important advantage of the proposed learning algorithm, in comparison with the SVM, 

is that the time taken to construct an SGF network with optimized parameter setting is normally 

much less that time taken to construct an SVM classifier.  Another desirable feature of the SGF 

network is that it can carry out data classification with more than two classes of objects in one 
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single run.  In other words, it does not need to invoke mechanisms such as one-against-one or 

one-against-all for handling datasets with more than two classes of objects.  The other main 

properties of the proposed learning algorithm are as follow: 

(i) the average time complexity for constructing an SGF network is bounded by O(n log n), where 

n is total number of training samples; 

(ii) the average time complexity for classifying n' incoming objects is bounded by O(n' log n). 

 

As the SGF networks constructed with the proposed learning algorithm are instance-based, 

this paper also addresses the efficiency issue shared by almost all instance-based learning 

algorithms.  Experimental results reveal that the naïve data reduction mechanism employed in this 

paper is able to reduce the size of the training data set substantially with a slight impact on 

classification accuracy.  One interesting observation in this regard is that, for all three data sets 

used in data reduction experiments, the number of training samples remaining after data reduction 

is applied is quite close to the number of support vectors identified by the SVM software. 

In summary, the SGF network constructed with the proposed learning algorithm is favorable 

over the SVM in dealing with a data set that does not contain a high percentage of redundant 

training samples.  In such case, the SGF network is able to deliver the same level of performance 

as the SVM in terms of both accuracy and the time taken in the prediction phase, while requiring 

substantially less time to construct a classifier.  On the other hand, if the data set contains a high 

percentage of redundant training samples, then data reduction must be applied, or the execution 

time of the SGF network would suffer.  As the incorporation of the naïve data reduction 

mechanism may lead to slightly lower classification accuracy, it is of interest to develop advanced 

data reduction mechanisms.  This paper also compares the performance of the SGF networks 

constructed with the proposed learning algorithm and the RBF networks constructed with a 

conventional cluster-based learning algorithm.  The most interesting observation learned is that, 

with respect to data classification, the distributions of training samples near the boundaries 
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between different classes of objects carry more crucial information than the distributions of 

samples inside the clusters.  As a result, the conventional RBF network generally is not able to 

deliver the same level of accuracy as those learning algorithms such as SVM and the SGF network 

that exploit the distributions of training samples near the boundaries between different classes of 

objects. 

Based on the study presented in this paper, there are several issues that deserve further studies, 

in addition to the development of advanced data reduction mechanisms mentioned above.  One 

issue is the extension of the proposed learning algorithm for handling categorical data sets.  

Another issue concerns why the SGF network fails to deliver comparable accuracy in the vehicle 

test case, what the blind spot is, and how improvements can be made.  Finally, it is of interest to 

develop incremental version of the proposed learning algorithm to cope with the ever-growing 

contemporary databases. 

 

Appendix A 

Assume that 
121 ksss ˆ ..., ,ˆ ,ˆ  are the k1 nearest training samples of si that belongs to the same class 

as si. If k1 is sufficiently large and the distribution of these k1 samples in the vector space is 

uniform then we have 
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The right-hand side of the equation above is then employed in this paper to estimate R(si). 
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(iii) for h ≠ 0 and h ≠ 1, 
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Combining equations (A.1) and (A.2), we obtain, for all y ∈ [0, 2
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If we set n = 100,000, then we have, with σ = δ, 506628288.2)(506628261.2 ≤≤ yq , for y ∈ [0, 

2
δ ). 

 

References 

[1] E. Artin, The Gamma Function, New York, Holt, Rinehart, and Winston, 1964. 

[2] R. K. Beatson, J. B. Cherrie, and C. T. Mouat, "Fast evaluation of radial basis functions: 

methods for four-dimensional polyhamonic splines," SIAM Journal on Scientific Computing, 

vol. 32. no. 6, pp. 1272-1310, 2001. 

[3] R. K. Beatson and W. A. Light, "Fast evaluation of radial basis functions: method for 

two-dimensional polyharmonic splines," IMA Journal of Numerical Analysis, vol. 17, pp. 

343-372, 1997. 

[4] R. K. Beatson, W. A. Light, and S. Billings, "Fast solution of the radial basis function 

interpolation equations: domain decomposition methods," SIAM Journal on Scientific 

Computing, vol. 22, no. 5, pp. 1717-1740, 2000. 

[5] F. Belloir, A. Fache, and A. Billat, "A general approach to construct RBF net-based 

classifier," Proceedings of the 7th European Symposium on Artificial Neural Network, pp. 

399-404, 1999. 

[6] J. L. Bentley, "Multidimensional binary search trees used for associative searching," 

Communication of the ACM, vol. 18, no. 9, pp. 509-517, 1975. 

[7] M. Bianchini, P. Frasconi, and M. Gori, "Learning without local minima in radial basis 

function networks," IEEE Transaction on Neural Networks, vol. 6, no. 3, pp. 749-756, 1995. 

[8] C. M. Bishop, "Improving the generalization properties of radial basis function neural 

networks," Neural Computation, vol. 3, no. 4, pp. 579-588l, 1991. 

[9] C. L. Blake and C. J. Merz, "UCI repository of machine learning databases," Technical report, 

University of California, Department of Information and Computer Science, Irvine, CA, 

1998. 



 

 29

[10] C. C. Chang and C. J. Lin, "LIBSVM: a library for support vector machines," 

http://www.csie.ntu. edu.tw/~cjlin/libsvm, 2001. 

[11] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for 

support vector machines," Machine Learning, vol. 46, pp. 131-159, 2002. 

[12] S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning for radial basis 

function networks," IEEE Transactions on Neural Networks, vol. 2, no. 2, pp. 302-309, 1991. 

[13] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge 

University Press, Cambridge, UK, 2000. 

[14] D. Decoste and K. Wagstaff, "Alpha seeding for support vector machines," Proceedings of 

International Conference on Knowledge Discovery and Data Mining, 2000. 

[15] K. Duan, S. S. Keerthi, and A. N. Poo, "Evaluation of simple performance measures for 

tuning SVM hyperparameters," Neurocomputing, vol. 51, pp. 41-59, 2003. 

[16] S. Dumais, J. Platt, and D. Heckerman, "Inductive learning algorithms and representations 

for text categorization," Proceedings of the International Conference on Information and 

Knowledge Management, pp. 148-154, 1998. 

[17] G. W. Flake, "Square unit augmented, radially extended, multilayer perceptrons," Neural 

Networks: Tricks of the Trade, G. B. Orr and K. Müller, Eds., pp. 145-163, 1998. 

[18] C. W. Hsu and C. J. Lin, "A comparison of methods for multi-class support vector 

machines," IEEE Transactions on Neural Networks, vol. 13, pp. 415-425, 2002. 

[19] Y. S. Hwang and S. Y. Bang, "An efficient method to construct a radial basis function neural 

network classifier," Neural Networks, vol. 10, no. 8, pp. 1495-1503, 1997. 

[20] T. Joachims, "Text categorization with support vector machines: learning with many relevant 

features," Proceedings of European Conference on Machine Learning, pp. 137-142, 1998. 

[21] V. Kecman, Learning and Soft Computing: Support Vector Machines, Neural Networks, and 

Fuzzy Logic Models, The MIT Press, Cambridge, Massachusetts, London, England, 2001. 



 

 30

[22] S. S. Keerthi, "Efficient tuning of SVM hyperparameters using radius/margin bound and 

iterative algorithms," IEEE Transactions on Neural Networks, vol. 13, pp. 1225-1229, 2002. 

[23] T. M. Mitchell, Machine Learning, McGraw-Hill, 1997. 

[24] J. Moody and C. J. Darken, "Fast learning in networks of locally-tuned processing units," 

Neural Computation, vol. 1, pp. 281-294, 1989. 

[25] M. Musavi, W. Ahmed, K. Chan, K. Faris, and D. Hummels, "On the training of radial basis 

function classifiers," Neural Networks, vol. 5, pp. 595-603, 1992. 

[26] M. J. L. Orr, "Regularisation in the selection of radial basis function centres," Neural 

Computation, vol. 7, no. 3, pp. 606-623, 1995. 

[27] M. J. L. Orr, "Introduction to radial basis function networks," Technical report, Center for 

Cognitive Science, University of Edinburgh, 1996. 

[28] M. J. Orr, "Optimising the widths of radial basis function," Proceedings of the Fifth Brazilian 

Symposium on Neural Networks, 1998, pp. 26-29. 

[29] M. J. Orr, J. Hallam, A. Murray, and T. Leonard, "Assessing rbf networks using delve," 

International Journal of Neural Systems, vol. 10, no. 5, pp. 397-415, 2000. 

[30] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, 1991. 

[31] T. Poggio and F. Girosi, "Networks for approximation and learning," Proceedings of the 

IEEE, vol. 78, no. 9, pp. 1481-1497, 1990. 

[32] M. J. Powell, "Radial basis functions for multivariable interpolation: a review," Algorithm for 

Approximation, J. C. Mason and M. G. Cox, Eds, Oxford, U. K.: Oxford University Press, 

1987, pp. 143-167. 

[33] B. Scholkopf, K. K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik, 

"Comparing support vector machines with Gaussian kernels to radial basis function 

classifiers," IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 1-8, 1997. 

[34] B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, 

London, 1986.  



 

 31

[35] I. H. Witten and E. Frank, Data Mining, San Francisco, CA, Morgan Kaufmann, 1999. 

 


