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Lecture 8 

Memory Hierarchy Design 
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Who Cares about Memory Hierarchy?
• Processor Only Thus Far in Course

– CPU cost/performance, ISA, Pipelined Execution

CPU-DRAM Gap

• 1980: no cache in µproc; 
1995 2-level cache, 60% trans. on Alpha 21164  µproc
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Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<1s ns

Cache
10s-100s K Bytes
1-10 ns
$10/ MByte

Main Memory
M Bytes
100ns- 300ns
$1/ MByte

Disk
10s G Bytes, 10 ms 
(10,000,000 ns)
$0.0031/ MByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
$0.0014/ MByte

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger
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General Principle

• The Principle of Locality:
– Program access a relatively small portion of the address space at any instant of 

time.
• Two Different Types of Locality:

– Temporal Locality (Locality in Time): 
• If an item is referenced, it will tend to be referenced again soon (e.g., loops, reuse)

– Spatial Locality (Locality in Space): 
• If an item is referenced, items whose addresses are close by tend to be referenced 

soon  (e.g., straightline code, array access)
• Locality + smaller HW is faster = memory hierarchy

– Levels: each smaller, faster, more expensive/byte than level below
– Inclusive: data found in top also found in the bottom

• Definitions
– Upper is closer to processor
– Block: minimum unit that present or not in upper level
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Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level (example: Block X) 

– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the lower level (Block Y)
– Miss Rate  = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y
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4 Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper level? (Block 
placement)

• Q2: How is a block found if it is in the upper level?
(Block identification)

• Q3: Which block should be replaced on a miss? 
(Block replacement)

• Q4: What happens on a write? 
(Write strategy)
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Q1: Where can a block be placed in the upper level? 

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set associative
– S.A. Mapping = Block Number Modulo Number Sets

Cache

01234567 0123456701234567

Memory

111111111122222222223301234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0

set 
0

set 
1

set 
2

set 
3
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1 KB Direct Mapped Cache, 32B blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9
block address
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Two-way Set Associative Cache
• N-way set associative: N entries for each Cache Index

– N direct mapped caches operates in parallel (N typically 2 to 4)
• Example: Two-way set associative cache

– Cache Index selects a “set” from the cache
– The two tags in the set are compared in parallel
– Data is selected based on the tag result

• Increasing associativity shrinks index, expands tag

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
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Exercise

• 1KB, Direct-Mapped, 64 Bytes
• 2KB, Direct-Mapped, 32 Bytes
• 2KB. 4-way associative, 32 Bytes
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Disadvantage of Set Associative Cache

• N-way Set Associative Cache v. Direct Mapped Cache:
– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:
– Possible to assume a hit and continue.  Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
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Q2: How is a block found if it is in the upper level?

• Tag on each block
– No need to check index or block offset

Block
Offset

Block Address

IndexTag
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Example: 1 KB Direct Mapped Cache, 32B blocks
Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag

0x50

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

9

0x03 0x00

0x50 0x01 0x00

0x60

xxx

1

0

hit

miss
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Example: 1 KB Direct Mapped Cache, 32B blocks
Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag

0x50

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

9

0x03 0x00

0x50 0x01 0x00

0x60

60

1

0

hit

miss
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Example: 1 KB Direct Mapped Cache, 32B blocks
Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag

0x50

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

9

0x03 0x00

0x50 0x01 0x00

0x60

0x60

1

1

0x80 0x01 0x00

hit

miss

miss

miss
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Example: 1 KB Direct Mapped Cache, 32B blocks
Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag

0x50

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

9

0x03 0x00

0x50 0x01 0x00

0x60

0x80

1

1

0x80 0x01 0x00

hit

miss

miss

miss
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Q3: Which block should be replaced on a miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

• Hardware keeps track of the access history
• Replace the entry that has not been used for the longest time

Assoc: 2-way 4-way 8-way
Size LRU     Ran  LRU Ran      LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
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Q4: What happens on a write?

• Write through—The information is written to both the block in the 
cache and to the block in the lower-level memory.

• Write back—The information is written only to the block in the cache. 
The modified cache block is written to main memory only when it is 
replaced.

– is block clean or dirty?
• Pros and Cons of each?

– WT:
• Good: read misses cannot result in writes
• Bad: write stall

– WB: 
• no repeated writes to same location
• Read misses could result in writes

• WT always combined with write buffers so that don’t wait for lower 
level memory
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Write Buffer for Write Through

• A Write Buffer is needed between the Cache and Memory
– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if:  Store frequency (w.r.t. time) << 1 / DRAM write cycle

• Memory system designer’s nightmare:
– Store frequency (w.r.t. time)   >  1 / DRAM write cycle
– Write buffer saturation

Processor
Cache

Write Buffer

DRAM
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Write Miss Policy

• Write allocate (fetch on write)
– The block is loaded on a write miss

• No-write allocate (write-around)
– The block is modified in the lower level and not loaded into the

cahce
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Cache Performance

CPU time = (CPU execution clock cycles + Memory stall 
clock cycles) x clock cycle time

Memory stall clock cycles = (Reads x Read miss rate x Read 
miss penalty + Writes x Write miss rate x Write miss 
penalty)

Memory stall clock cycles = Memory accesses x Miss rate x 
Miss penalty
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Cache Performance

CPUtime = IC x (CPIexecution + Mem accesses per instruction x 
Miss rate x Miss penalty) x Clock cycle time

Misses per instruction = Memory accesses per instruction x 
Miss rate

CPUtime = IC x (CPIexecution + Misses per instruction x Miss 
penalty) x Clock cycle time
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Example

• Miss penalty 50 clocks
• Miss rate 2%
• Base CPI 2.0
• 1.33 references per instruction
• Compute the CPU time

• CPU time = IC x (2.0 + (1.33 x 0.02 x 50)) x clock
• CPU time = IC x 3.33 x Clock
• So CPI increased from 2.0 to 3.33 with a 2% miss rate
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Example 2

• Two caches: both 64KB, 32 byte block, miss penalty 70ns, 
1.3 references per instruction, CPI 2.0 with perfect cache

• Direct mapped
– Cycle time 2ns
– Miss rate 1.4%

• 2-way associative
– Cycle time increases by 10%
– Miss rate 1.0%

• Which is better?
– Average memory access time?
– CPU time? 
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Example 2 continued

• Average memory access time : hit time + (miss rate x miss 
penalty)
– 1-way: 2.0 + (0.014 x 70) = 2.98ns
– 2-way: 2.2 + (0.010 x 70) = 2.90ns

• CPU time = IC x CPI x Cycle
– 1-way:  IC x ((2.0 x 2.0) + (1.3 x 0.014 x 70)) = 5.27 x IC
– 2-way : IC x (2.0 x 2.2) + (1.3 x 0.010 x 70)) = 5.31 x IC 

Which one is better?


