
1

Lecture 8

Memory Hierarchy Design

2

Who Cares about Memory Hierarchy?
• Processor Only Thus Far in Course

– CPU cost/performance, ISA, Pipelined Execution

CPU-DRAM Gap

• 1980: no cache in µproc;
1995 2-level cache, 60% trans. on Alpha 21164 µproc

1

10

100

1000

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

3

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<1s ns

Cache
10s-100s K Bytes
1-10 ns
$10/ MByte

Main Memory
M Bytes
100ns- 300ns
$1/ MByte

Disk
10s G Bytes, 10 ms
(10,000,000 ns)
$0.0031/ MByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
$0.0014/ MByte

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

4

General Principle

• The Principle of Locality:
– Program access a relatively small portion of the address space at any instant of

time.
• Two Different Types of Locality:

– Temporal Locality (Locality in Time):
• If an item is referenced, it will tend to be referenced again soon (e.g., loops, reuse)

– Spatial Locality (Locality in Space):
• If an item is referenced, items whose addresses are close by tend to be referenced

soon (e.g., straightline code, array access)
• Locality + smaller HW is faster = memory hierarchy

– Levels: each smaller, faster, more expensive/byte than level below
– Inclusive: data found in top also found in the bottom

• Definitions
– Upper is closer to processor
– Block: minimum unit that present or not in upper level

5

Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level (example: Block X)

– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the lower level (Block Y)
– Miss Rate = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

6

4 Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper level? (Block
placement)

• Q2: How is a block found if it is in the upper level?
(Block identification)

• Q3: Which block should be replaced on a miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

7

Q1: Where can a block be placed in the upper level?

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set associative
– S.A. Mapping = Block Number Modulo Number Sets

Cache

01234567 0123456701234567

Memory

111111111122222222223301234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0

set
0

set
1

set
2

set
3

8

1 KB Direct Mapped Cache, 32B blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9
block address

9

Two-way Set Associative Cache
• N-way set associative: N entries for each Cache Index

– N direct mapped caches operates in parallel (N typically 2 to 4)
• Example: Two-way set associative cache

– Cache Index selects a “set” from the cache
– The two tags in the set are compared in parallel
– Data is selected based on the tag result

• Increasing associativity shrinks index, expands tag

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

10

Exercise

• 1KB, Direct-Mapped, 64 Bytes
• 2KB, Direct-Mapped, 32 Bytes
• 2KB. 4-way associative, 32 Bytes

11

Disadvantage of Set Associative Cache

• N-way Set Associative Cache v. Direct Mapped Cache:
– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:
– Possible to assume a hit and continue. Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

12

Q2: How is a block found if it is in the upper level?

• Tag on each block
– No need to check index or block offset

Block
Offset

Block Address

IndexTag

13

Example: 1 KB Direct Mapped Cache, 32B blocks
Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag

0x50

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

9

0x03 0x00

0x50 0x01 0x00

0x60

xxx

1

0

hit

miss

14

Example: 1 KB Direct Mapped Cache, 32B blocks
Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag

0x50

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

9

0x03 0x00

0x50 0x01 0x00

0x60

60

1

0

hit

miss

15

Example: 1 KB Direct Mapped Cache, 32B blocks
Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag

0x50

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

9

0x03 0x00

0x50 0x01 0x00

0x60

0x60

1

1

0x80 0x01 0x00

hit

miss

miss

miss

16

Example: 1 KB Direct Mapped Cache, 32B blocks
Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag

0x50

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

9

0x03 0x00

0x50 0x01 0x00

0x60

0x80

1

1

0x80 0x01 0x00

hit

miss

miss

miss

17

Q3: Which block should be replaced on a miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

• Hardware keeps track of the access history
• Replace the entry that has not been used for the longest time

Assoc: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

18

Q4: What happens on a write?

• Write through—The information is written to both the block in the
cache and to the block in the lower-level memory.

• Write back—The information is written only to the block in the cache.
The modified cache block is written to main memory only when it is
replaced.

– is block clean or dirty?
• Pros and Cons of each?

– WT:
• Good: read misses cannot result in writes
• Bad: write stall

– WB:
• no repeated writes to same location
• Read misses could result in writes

• WT always combined with write buffers so that don’t wait for lower
level memory

19

Write Buffer for Write Through

• A Write Buffer is needed between the Cache and Memory
– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle

• Memory system designer’s nightmare:
– Store frequency (w.r.t. time) > 1 / DRAM write cycle
– Write buffer saturation

Processor
Cache

Write Buffer

DRAM

20

Write Miss Policy

• Write allocate (fetch on write)
– The block is loaded on a write miss

• No-write allocate (write-around)
– The block is modified in the lower level and not loaded into the

cahce

21

Cache Performance

CPU time = (CPU execution clock cycles + Memory stall
clock cycles) x clock cycle time

Memory stall clock cycles = (Reads x Read miss rate x Read
miss penalty + Writes x Write miss rate x Write miss
penalty)

Memory stall clock cycles = Memory accesses x Miss rate x
Miss penalty

22

Cache Performance

CPUtime = IC x (CPIexecution + Mem accesses per instruction x
Miss rate x Miss penalty) x Clock cycle time

Misses per instruction = Memory accesses per instruction x
Miss rate

CPUtime = IC x (CPIexecution + Misses per instruction x Miss
penalty) x Clock cycle time

23

Example

• Miss penalty 50 clocks
• Miss rate 2%
• Base CPI 2.0
• 1.33 references per instruction
• Compute the CPU time

• CPU time = IC x (2.0 + (1.33 x 0.02 x 50)) x clock
• CPU time = IC x 3.33 x Clock
• So CPI increased from 2.0 to 3.33 with a 2% miss rate

24

Example 2

• Two caches: both 64KB, 32 byte block, miss penalty 70ns,
1.3 references per instruction, CPI 2.0 with perfect cache

• Direct mapped
– Cycle time 2ns
– Miss rate 1.4%

• 2-way associative
– Cycle time increases by 10%
– Miss rate 1.0%

• Which is better?
– Average memory access time?
– CPU time?

25

Example 2 continued

• Average memory access time : hit time + (miss rate x miss
penalty)
– 1-way: 2.0 + (0.014 x 70) = 2.98ns
– 2-way: 2.2 + (0.010 x 70) = 2.90ns

• CPU time = IC x CPI x Cycle
– 1-way: IC x ((2.0 x 2.0) + (1.3 x 0.014 x 70)) = 5.27 x IC
– 2-way : IC x (2.0 x 2.2) + (1.3 x 0.010 x 70)) = 5.31 x IC

Which one is better?

