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Lecture 10:

Memory Hierarchy: 
• reduce miss-penalty
• Reduce hit time
• Main memory



2

Review: Summary

• 3 Cs: Compulsory, Capacity, Conflict  Misses
• Improving cache performance

– Average memory access time = hit time + miss-rate x miss-
penalty

• Reducing Miss Rate
1. Reduce Misses via Larger Block Size
2. Reduce Conflict Misses via Higher Associativity
3. Reducing Conflict Misses via Victim Cache
4. Reducing Conflict Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Capacity/Conf. Misses by Compiler Optimizations
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1. Reduce Misses via Larger Block 
Size

• Block size     Compulsory misses   
– Spatial locality 
– Example: access patter 0x0000,0x0004,0x0008,0x0012,..

Block size = 2 Word 
0x0012 (hit)0x0008 (miss)0x0004 (hit)0x0000 (miss)

Block size = 4 Word 0x0012 (hit)0x0008 (hit)0x0004 (hit)0x0000 (miss)
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• Block size     Miss penalty 
• Larger block size may increase capacity 

misses & conflict misses
– Example1 (conflict misses): 

» access pattern 0,2,4,6,9,11,13,15,0,2,4,6,…

1. Reduce Misses via Larger Block 
Size

156 13411290

76 543210

15141312111098

Block size = 1B, direct-mapped cache

Block size = 2B, direct--mapped cache

76 543210
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2. Reduce Misses via Higher
Associativity

• 2:1 Cache Rule: 
– Miss Rate DM cache size N - Miss Rate 2-way cache size 

N/2

• Beware: Execution time is only final measure!
– Will Clock Cycle time increase?
– Hill [1988] suggested hit time external cache +10%, 

internal + 2% for 2-way vs. 1-way
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3. Reducing Misses via 
Victim Cache

• How to combine fast hit 
time of Direct Mapped 
yet still avoid conflict 
misses? 

• Add buffer to place data 
discarded from cache

• Jouppi [1990]: 4-entry 
victim cache removed 
20% to 95% of conflicts 
for a 4 KB direct mapped 
data cache

01234567

4

victim cache
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01234567
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4. Reducing Misses via Pseudo-
Associativity

• How to combine fast hit time of Direct Mapped and have 
the lower conflict misses of 2-way SA cache? 

• Divide cache: on a miss, check other half of cache to see 
if there, if so have a pseudo-hit (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to  processor

Hit Time

Pseudo Hit Time Miss Penalty

Time
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5. Reducing Misses by HW Prefetching
of Instruction & Data

• Bring a cache block up the memory hierarchy 
before it is requested by the processor

• Example: Stream Buffer for instruction 
prefetching (alpha 21064)

– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in stream buffer
– On miss check stream buffer

01234567

4 5

stream buffer

CPU
Issue prefetch request 6 

memory
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6. Reducing Misses by 
SW Prefetching Data

• Data Prefetch
– Compiler insert prefetch instructions to the request the data before they 

are needed
– Example:

For (i = 0; i< 100; i++)
prefetch (a[i+4]);
a[i] = a[i]+ 8

– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults;

a form of speculative execution
– Need a non-blocking cache

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
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7. Reducing Misses by Compiler 
Optimizations

• Instructions
– Reorder procedures in memory so as to reduce misses
– Profiling to look at conflicts
– McFarling [1989] reduced caches misses by 75% on 8KB direct mapped 

cache with 4 byte blocks
• Data

– Merging Arrays: improve spatial locality by single array of compound 
elements vs. 2 arrays

– Loop Interchange: change nesting of loops to access data in order stored 
in memory

– Loop Fusion: Combine 2 independent loops that have same looping and 
some variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of data 
repeatedly vs. going down whole columns or rows
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Merging Arrays Example

/* Before */
int val[SIZE];
int key[SIZE];

/* After */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key

Key2
Key1
Val4
Val3
Val2
Val1

Key4
Key3

conflict 

Key3
V al3
Key2
Val2
Key1
Val1

Key4
Val4
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Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses Instead of striding through 
memory every 100 words (improve spatial 
locality) 
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Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access 
(improve temporal locality)
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Blocking Example
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};
x[i][j] = r;
};

0         1    2      3       4        5             0       1        2       3        4       5           0         1      2          3     4      6

x y z

i

j

i

k

k

j
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Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Capacity Misses a function of N & Cache Size:
– 3 NxN => no capacity misses; otherwise 2N3 + N2

• Idea: compute on BxB submatrix that fits
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Blocking Example
/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};
x[i][j] = x[i][j] + r;
};
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Blocking Example

/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• B called Blocking Factor
• Conflict Misses Too? 
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Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the  misses vs. 

48 despite both fit in cache

Blocking Factor   

0

0.05

0.1

0 50 100 150

Fully Associative Cache    

Direct Mapped Cache   
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Performance Improvement           

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to 
Reduce Cache Misses



20

1. Reducing Miss Penalty: Read 
Priority over Write on Miss

• Write buffer : 
– Decrease write stall time (+)
– RAW Hazard (-)

SW    512(R0), R3 ;  M[512]<- R3               (cache index 0)
LW    R1, 1024(R0)             ; R1 <- M[1024]            (cache index 0)
LW    R2, 512(R0) ; R2 <- M[512]              (cache index 0)

RAW Hazard (assume direct-mapped, write-through cache)

cache

memory

Write buffer

old value (r0+512)

New value (r0+512)

Read 

write 
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1. Reducing Miss Penalty: Read 
Priority over Write on Miss

• If simply wait for write buffer to empty might increase 
read miss penalty by 50% (old MIPS 1000)

• Check write buffer contents before read; 
if no conflicts, let the memory access continue

• How to reduce read-miss penalty for a write-back 
cache?

– Read miss replacing dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead copy the dirty block to a write buffer, then do the read, 

and then do the write
– CPU stall less since restarts as soon as do read
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1

0

1
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2. Subblock Placement to Reduce 
Miss Penalty

• Don’t have to load full block on a miss
• Have bits per subblock to indicate valid
• (Originally invented to reduce tag storage)

Valid Bits

204

200

300

100

0000

1010

0011

1111
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3. Early Restart and Critical Word 
First

• Don’t wait for full block to be loaded before restarting 
CPU

– Early restart—
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4. Non-blocking Caches to reduce 
stalls on misses

• Non-blocking cache or  lockup-free cache allowing the 
data cache to continue to supply cache hits during a 
miss

• “hit under miss” reduces the effective miss penalty 
by being helpful during a miss instead of ignoring the 
requests of the CPU

• “hit under multiple miss” or “miss under miss” may 
further lower the effective miss penalty by overlapping 
multiple misses

– Significantly increases the complexity of the cache controller as 
there can be multiple outstanding memory accesses
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5th Miss Penalty  Reduction: 
Second Level Cache

• L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 + 
Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the total 

number of memory accesses to this cache (Miss rateL2)
– Global miss rate—misses in this cache divided by the total 

number of memory accesses generated by the CPU
(Miss RateL1 x Miss RateL2) 

L1

L2

Main 
Memory
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Comparing Local and Global Miss 
Rates Figure 5.23

• 32 KByte 1st level cache;
Increasing 2nd level cache

• Global miss rate close to single level 
cache rate provided L2 >> L1

• Don’t use local miss rate
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L2 Cache Design Principle

• L2 not tied to CPU clock cycle
• Consider Cost & A.M.A.T.
• Generally Fast Hit Times and fewer misses
• Since hits are few, target miss reduction

– Larger cache, higher associativity and larger blocks
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Relative CPU Time   

Block Size   

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

16 32 64 128 256 512

1.36
1.28 1.27

1.34

1.54

1.95

L2 cache block size & A.M.A.T.

• 32KB L1, 8 byte path to memory
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Reducing Miss Penalty Summary

• Five techniques
– Read priority over write on miss
– Subblock placement
– Early Restart and Critical Word First on miss
– Non-blocking Caches (Hit Under Miss)
– Second Level Cache

• Can be applied recursively to Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in 

between
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Review: Improving Cache 
Performance

1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 
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1. Fast Hit times via Small and 
Simple Caches

• Why Alpha 21164 has 8KB Instruction and 
8KB data cache + 96KB second level cache

• Direct Mapped, on chip
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2. Fast hits by Avoiding Address 
Translation

• Address translation – from virtual to physical 
addresses 

• Physical cache:
– 1. Virtual -> physical
– 2. Use physical address to index cache  => longer hit time

• Virtual cache:
– Use virtual cache to index cache => shorter hit time
– problem: aliasing 

More on this after covering virtual memory issues !
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• Pipeline Tag Check and Update Cache as separate stages; current 
write tag check & previous write cache update 

• Only Write in the pipeline; empty during a miss

write x1
write x2

3. Fast Hit Times Via Pipelined Writes

tag check x1     write data

tag check x2       write data
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3. Fast Hit Times Via Pipelined 
Writes

• Delayed Write Buffer: must be checked on 
reads; either complete write or read from 
buffer

tag Delayed write buffer

mux

CPU
Data in   data out

=?

=?

Data

address

Write 
buffer

Lower level memory
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4. Fast Writes on Misses Via Small
Subblocks

• If most writes are 1 word, subblock size is 1 word,  & write 
through then always write subblock & valid bit 
immediately 

– Tag match and valid bit already set: Writing the block was proper, & 
nothing lost by setting valid bit on again.

– Tag match and valid bit not set: The tag match means that this is the 
proper block; writing the data into the subblock makes it appropriate to 
turn the valid bit on.

– Tag mismatch: This is a miss and will modify the data portion of the 
block. As this is a write-through cache, however, no harm was done; 
memory still has an up-to-date copy of the old value. Only the tag to the 
address of the write and the valid bits of the other subblock need be 
changed because the valid bit for this subblock has already been set

• Doesn’t work with write back due to last case
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Cache Optimization Summary

Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Subblock Placement + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level  Caches + 2
Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Writes + 1
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Main   Memory
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Main Memory Background
• Performance of Main Memory: 

– Latency: time to finish a request
» Access Time: time between request and word arrives
» Cycle Time: time between requests
» Cycle time > Access Time

– Bandwidth: Bytes/per second
• Main Memory is DRAM: Dynamic Random Access Memory

– Dynamic since needs to be refreshed periodically (8 ms)
– Addresses divided into 2 halves (Memory as a 2D matrix):

» RAS or Row Access Strobe
» CAS or Column Access Strobe

• Cache uses SRAM: Static Random Access Memory
– No refresh (6 transistors/bit vs. 1 transistor /bit)
– Address not divided

• Size: DRAM/SRAM - 4-8, 
Cost/Cycle time: SRAM/DRAM - 8-16
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Main Memory Performance

• Simple: 
– CPU, Cache, Bus, Memory 

same width (32 bits)

• Wide: 
– CPU/Mux 1 word;

Mux/Cache, Bus, Memory N 
words (Alpha: 64 bits & 256 
bits)

• Interleaved: 
– CPU, Cache, Bus 1 word: 

Memory N Modules
(4 Modules); example is 
word interleaved

CPU

Cache

Memory

One word

One word

Simple

CPU

Cache

Bank
0

One word

One word

Bank
1

Bank
2

Bank
3

Interleaved
CPU

Cache

Memory

`multiplexor

Wide
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Main Memory Performance

• Timing model
– 4 clock cycles to send address, 
– 24 clock cycles  for access time per word
– 4 clock cycles to send x (bus bandwidth ) words of data 
– Cache block size  = 4 words

• Simple M.P. = 4 x (4+24+4) = 128
• Wide M.P. = 4 + 24 + 4       = 32
• Interleaved M.P. = 4+ 24 + 4x4 = 44

4

12

8

0

5

13

9

1
6

14

10

2

7

15

11

3

Address     Bank 0                  Bank 1               Bank 2 Bank 3
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Bank offset
Superbank offset

Bank number
Superbank number

Independent Memory Banks

• Memory banks for independent accesses vs. 
faster sequential accesses

– Multiprocessor
– I/O
– Miss under Miss, Non-blocking Cache

Super bank   0                            1                     2             :::

0    1    2   3
bank

Independent banks

0    1    2   3
bank

0    1    2   3
bank
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Avoiding Bank Conflicts

• Bank Conflicts
– Memory references map to the same bank
– Problem: cannot take advantage of multiple banks (supporting multiple 

independent request)
• Example: all elements of a column are in the same memory bank 

with 128 memory banks, interleaved on a word basis

int x[256][512];
for (j = 0; j < 512; j = j+1)

for (i = 0; i < 256; i = i+1)
x[i][j] = 2 * x[i][j];

• SW: loop interchange or declaring array not power of 2
• HW: Prime number of banks

– Problem: more complex calculation per memory access 
– Memory address = (bank number, address within bank)
– bank number =  address mod number of banks
– address within bank = address / number of banks
– modulo & divide per memory access
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• Bank number =  address mod number of banks 
• Address within bank = address mod number words in bank 

=> prove that there is no ambiguity using this mapping method
• Chinese Remainder Theorem

As long as two sets of integers ai and bi follow these rules

and that ai and aj are co-prime if i ≠ j, then the integer x has only one solution 
(unambiguous mapping):

– bank number = b0, number of banks = a0 (b0 = x mod a0)
– address within bank = b1, number of words in bank = a1 (b1 = x mod a1)
– Bank number < Number of banks ( 0≤b0≤a0)
– Address within a bank < Number of words in bank ( 0≤b1≤ a1)
– Address < Number of banks x Number of words in a bank (0 ≤x<a0xa1)
– The number of banks and the number of words in a bank are co-prime (a0 and a1 

are co-prime)
» N word address 0 to N-1, prime no. banks, words power of 2

bi = x mod ai, 0 ≤ bi < ai, 0 ≤ x < a 0 × a1 × a 2×…

Fast Bank Number
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Fast Bank Number

Seq. Interleaved Modulo Interleaved
BankNumber: 0 1 2 0 1 2
Address
within Bank: 

0 0 1 2 0 16 8

1 3 4 5 9 1 17
2 6 7 8 18 10 2

3 9 10 11 3 19 11
4 12 13 14 12 4 20
5 15 16 17 21 13 5
6 18 19 20 6 22 14
7 21 22 23 15 7 23
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Fast Memory Systems: DRAM specific
• Multiple RAS accesses: several names (page mode)

– 64 Mbit DRAM: cycle time = 100 ns, page mode = 20 ns
• New DRAMs to address gap; 

what will they cost, will they survive?
– Synchronous DRAM: Provide a clock signal to DRAM, transfer 

synchronous to system clock
– RAMBUS: reinvent DRAM interface

» Each Chip a module vs. slice of memory
» Short bus between CPU and chips
» Does own refresh
» Variable amount of data returned
» 1 byte / 2 ns (500 MB/s per chip)

• Niche memory 
– e.g., Video RAM for frame buffers, DRAM + fast serial output
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Main Memory Summary

• Wider Memory
• Interleaved Memory: for sequential or independent 

accesses
• Avoiding bank conflicts: SW & HW
• DRAM specific optimizations: page mode & 

Specialty DRAM


