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Abstract

Image object retrieval — locating image occurrences of
specific objects in large-scale image collections — is essen-
tial for manipulating the sheer amount of photos. Cur-
rent solutions, mostly based on bags-of-words model, suf-
fer from low recall rate and do not resist noises caused by
the changes in lighting, viewpoints, and even occlusions.
We propose to augment each image with auxiliary visual
words (AVWs), semantically relevant to the search targets.
The AVWs are automatically discovered by feature propa-
gation and selection in textual and visual image graphs in
an unsupervised manner. We investigate variant optimiza-
tion methods for effectiveness and scalability in large-scale
image collections. Experimenting in the large-scale con-
sumer photos, we found that the the proposed method sig-
nificantly improves the traditional bag-of-words (111% rel-
atively). Meanwhile, the selection process can also notably
reduce the number of features (to 1.4%) and can further fa-
cilitate indexing in large-scale image object retrieval.

1. Introduction

Image object retrieval — retrieving images (partially)
containing the target image object — is one of the key tech-
niques of managing the exponentially growing image/video
collections. It is a challenging problem because the target
object may cover only a small region in the database images
as shown in Figure 1. Lots of promising applications such
as annotation by search [17, 18], geographical information
estimation [7], etc., are keen to the accuracy and efficiency
of image object retrieval.

Bag-of-words (BoW) model is popular and shown effec-
tive for image object retrieval [14]. BoW representation
quantizes high-dimensional local features into discrete vi-
sual words (VWs). However, traditional BoW-like methods
fail to address issues related to noisily quantized visual fea-
tures and vast variations in viewpoints, lighting conditions,
occlusions, etc., commonly observed in large-scale image
collections [12, 21]. Thus, it suffers from low recall rate as
shown in Figure 1(b).
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Figure 1. Comparison in the retrieval performance of the tradi-
tional BoW model [14] and the proposed approach. (a) An exam-
ple of object-level query image. (b) The retrieval results of a Bow
model, which generally suffers from the low recall rate. (c) The
results of the proposed system, which obtains more accurate and
diverse results. Note that the number below each image is its rank
in the retrieval results and the number in a parenthesis represents
the rank predicted by the BoW model.

Due to variant capture conditions and large VW vocabu-
lary (e.g., 1 million vocabulary), the features for the target
image objects might have different VWs (cf. Figure 1(c)).
Besides, it is also difficult to obtain these VWs through
query expansion (e.g., [1]) or even varying quantization
methods (e.g., [12]) because of the large differences in vi-
sual appearance between the query and the target objects.

We observe the sparseness for the visual words in BoW
model to cover the whole search targets and the lack of se-
mantic related features from these visual features only, as
discussed in Section 3. In this work, we argue to augment
each image in the image collections with auxiliary visual
words (AVW)—additional visual features semantically rel-
evant to the search targets (cf. Figure 1(c)). Targeting at
large-scale image collections for serving different queries,
we mine the auxiliary visual words in an unsupervised man-
ner by incorporating bother visual and (noisy) textual in-
formation. We construct graphs of images by visual and
textual information (if available) respectively. We then au-
tomatically propagate the semantic and select the informa-



tive AVWs across the visual and textual graphs since these
two modalities can boost each other (cf. Figure 3). The two
processes are formulated as optimization formulations itera-
tively through the subtopics in the image collections. Mean-
while, we also consider the scalability issues by leveraging
distributed computation framework (e.g., MapReduce).
Experiments show that the proposed method greatly im-
proves the recall rate for image object retrieval. Specifically,
the unsupervised auxiliary visual words discovery greatly
outperforms BoW models (by 111% relatively) and comple-
mentary to conventional pseudo-relevance feedback. Mean-
while, AVW discovery can also derive very compact (i.e.,
1.4% of the original features) and informative feature rep-
resentations which will benefit the indexing structure [14].
The primary contributions of the paper include,

e Observing the problems in large-scale image object re-
trieval by conventional BoW model (Section 3).

e Proposing auxiliary visual words discovery through vi-
sual and textual clusters in an unsupervised and scal-
able fashion (Section 4).

e Investigating variant optimization methods for effi-
ciency and accuracy in AVW discovery (Section 5).

e Conducting experiments on consumer photos and
showing great improvement of recall rate for image ob-
ject retrieval (Section 7).

2. Related Work

Most image object retrieval systems adopt the scale-
invariant feature transform (SIFT) descriptor [&] to capture
local information and adopt bag-of-words (BoW) model
[14] to conduct object matching [1, 11]. The SIFT descrip-
tors are quantized to visual words (VWs), such that index-
ing techniques well developed in the text domain can be
directly applied.

The learned VW vocabulary will directly affect the im-
age object retrieval performance. The traditional BoW
model adopts k-means clustering to generate the vocabu-
lary. A few attempts try to impose extra information for vi-
sual word generation such as visual constraints [ | 3], textual
information [19]. However, it usually needs extra (manual)
information during the supervised learning, which might be
formidable in large-scale image collections.

Instead of generating new VW vocabulary, some re-
searches work on the original VW vocabulary such as [15].
It suggested to select useful feature from the neighboring
images to enrich the feature description. However, its per-
formance is limited for large-scale problems because of
the need to perform spatial verification, which is compu-
tationally expensive. Moreover, it only considers neighbor-
ing images in the visual graph, which provides very lim-
ited semantic information. Other selection methods for the
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Figure 2. Cumulative distribution of the frequency of VW occur-

rence in two different image databases, cf. Section 3.1. It shows

that half of the VWSs occur in less than 0.11% of the database im-

ages (i.e. 12 and 617 images, respectively). The statistics represent

that VWs are distributed over the database images very sparsely.

useful features such as [6] and [10] are based on different
criteria—the number of inliers after spatial verification, and
pairwise constraints for each image, thus suffer from lim-
ited scalability and accuracy.

Authors in [9] consider both visual and textual informa-
tion and adopt unsupervised learning methods. However,
they only use global features and adopt random-walk-like
process for post-processing in image retrieval. Similar limi-
tations are observed in [16], where only the similarity image
scores are propagated between textual and visual graphs.
Different from the prior works, we use local features for
image object retrieval and propagate the VWs directly be-
tween the textual and visual graphs. The discovered aux-
iliary VWs are thus readily effective in retrieving diverse
search results, eliminating the need to apply a random walk
in the graphs again.

To augment images with their informative features, we
propose auxiliary visual words discovery, which can effi-
ciently propagate semantically relevant VWs and select rep-
resentative visual features by exploiting both textual and vi-
sual graphs. The discovered auxiliary visual words demon-
strate significant improvement over the BoW baseline and
are shown orthogonal and complementary to conventional
pseudo-relevance feedback. Besides, when dataset size be-
comes larger, we can apply all the processes in a parallel
way (e.g., MapReduce).

3. Key Observations—Requiring Auxiliary Vi-
sual Words

Nowadays, bag-of-words (BoW) representation [14] is
widely used in image object retrieval and has been shown
promising in several content-based image retrieval (CBIR)
tasks (e.g., [11]). However, most existing systems sim-
ply apply the BoW model without carefully considering the
sparse effect of the VW space [2], as detailed in Section
3.1. Another observation (explained in Section 3.2) is that



VWs are merely for describing visual appearances and lack
the semantic descriptions for retrieving more diverse results
(cf. Figure 1(b)). The proposed AVW discovery method is
targeted to address these issues.

3.1. Sparseness of the Visual Words

For better retrieval accuracy, most systems will adopt 1
million VWs for their image object retrieval system as sug-
gested in [11]. However, our statistics shows that the oc-
currence of VWs in different images is very sparse. We
calculate it on two image databases of different sizes, i.e.
Flickr550 and Flickr11K (cf. Section 6.1), and obtain simi-
lar curves as shown in Figure 2. We can find that half of the
VWs only occur in less than 0.11% of the database images
and most of the VWSs (i.e. around 96%) occur in less than
the 0.5% ones (i.e. 57 and 2702 images, respectively). That
is to say, two images sharing one specific VW seldom con-
tain similar features. In other words, those similar images
might only have few common VWs. This phenomenon is
known as the uniqueness of VWs [2]. It is partly due to
some quantization errors or noisy features. Therefore, in
Section 4, we propose to augment each image with auxil-
iary visual words.

3.2. Lacking Semantics Related Features

Since VWs are merely low-level visual features, it is very
difficult to retrieve object images with different viewing an-
gles, lighting conditions, partial occlusions, etc. An exam-
ple is shown in Figure 3. By using BoW models, the query
image (the top-left one) can easily obtain visually similar
results (e.g., the bottom-left one) but often fails to retrieve
the ones in a different viewing angle (e.g. the right-hand
side image). This problem can be alleviated by taking ben-
efit from the textual semantics. That is, by using the textual
information associated with images, we are able to obtain
semantically similar images as shown in the red dotted rect-
angle in Figure 3. If those semantically similar images can
share (propagate) their VWs to each other, the query image
can still obtain similar but more visually and semantically
diverse results.

4. Auxiliary Visual Words Discovery

Based on the previous observations, it is necessary to
propagate VWs to those visually or semantically similar
images. Consequently, we propose an offline stage for un-
supervised auxiliary visual words discovery. We augment
each image with auxiliary visual words (features) by con-
sidering semantically related VWs in its textual cluster and
representative VWs in its visual cluster. When facing large-
scale dataset, we can deploy all the processes in a paral-
lel way (e.g., MapReduce [3]). Besides, AVW reduces the
number of VWs to be indexed (i.e., better efficiency in time
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Figure 3. Illustration of the roles of semantic related features in
the image object retrieval. Images in the blue rectangle are visu-
ally similar, whereas those images in the red dotted rectangle are
textually similar. The semantic (textual) features are promising to
establish the in-between connection (Section 4) to help the query
image (the top-left one) retrieve the right-hand-side image.
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and memory). Such AVW might potentially benefit the fur-
ther image queries and can greatly improve the recall rate
as demonstrated in Section 7.1 and in Figure 7. For mining
AVWs, we first generate image graphs and image clusters
in Section 4.1. Then based on the image clusters, we propa-
gate auxiliary VWs in Section 4.2 and select representative
VWs in Section 4.3. Finally, we combine both selection and
propagation methods in Section 4.4.

4.1. Graph Construction and Image Clustering

The image clustering is first based on a graph construc-
tion. The images are represented by IM VWs and 90K text
tokens expanded by Google snippets from their associated
(noisy) tags. We take the advantage of the sparseness and
use cosine measure as the similarity measure. The mea-
sure is essentially an inner product of two feature vectors
and only the non-zero dimensions will affect the similar-
ity value—i.e., skipping the dimensions that either feature
has a zero value. We observe that the textual and visual
features are sparse for each image and the correlation be-
tween images are sparse as well. We adopt efficient algo-
rithms (e.g., [4]) to construct the large-scale image graph by
MapReduce. To cluster images on the image graph, we ap-
ply affinity propagation (AP) [5] for graph-based clustering.
AP passes and updates messages among nodes on graph it-
eratively and locally—associating with the sparse neighbors
only. AP’s advantages include automatic determining the
number of clusters, automatic exemplar (canonical image)
detection within each cluster.

The image clustering results are sampled in Figure 4.
Note that if an image is close to the canonical image (center
image), it has a higher AP score, indicating that it is more
strongly associated with the cluster.



(a) A visual cluster sample.

(b) A textual cluster sample.
Figure 4. Sample image clusters (cf. Section 4.1). The visual clus-
ter groups visually similar images in the same cluster, whereas the
textual cluster favors semantic similarities. The two clusters facil-
itate representative VWs selection and semantic (auxiliary) VWs
propagation, respectively.

4.2. Semantic Visual Features Propagation

Seeing the limitations in BoW model, we propose to aug-
ment each image with additional VWs propagated from the
visual and textual clusters (Figure 5(a)). Propagating the
VWs from both visual and textual domains can enrich the
visual descriptions of the images and be beneficial for fur-
ther image object queries. For example, it is promising to
derive more semantic VWs by simply exchanging the VWs
among (visually diverse but semantically consistent) images
of the same textual cluster (cf. Figure 4(b)) .

We actually conduct the propagation on each extend vi-
sual cluster, containing the images in a visual cluster and
those additional ones co-occuring with these images in cer-
tain textual clusters. The intuition is to balance visual and
semantic consistence for further VW propagation and se-
lection (cf. Section 4.3). Figure 5(b) shows two extended
visual clusters derived from Figure 5(a). More interestingly,
image F is singular in textual cluster due to having no tags;
however, E still belongs to a visual cluster and can still re-
ceive AVWs in its associated extended visual cluster. Sim-
ilarly, if there is a single image in a visual cluster such as
image H, it can also obtain auxiliary VWs (i.e., from image
B and F)) in the extended visual cluster.

Assuming matrix X € RV*D represents the N image
histograms in the extended visual cluster and each image
has D (i.e., 1 million) dimensions. And X; stands for the
VW histogram of image 7. Assume M among N are from
the same visual cluster; for example, N = 8 and M = 4
in the left extended visual cluster in Figure 5(b). The vi-
sual propagation is conducted by the propagation matrix
P € RM*N which controls the contributions from differ-
ent images in the extended visual cluster'. P(i,5) € [0, 1]

!Note that here we first measure the images from the same visual cluster
only. However, by propagating through each extended visual clusters, we
can derive the AVWs for each image.

Textual clusters [H]

/
B®

e B

[[] From textual clusters

O From visual cluster

Visual clusters

(a) Visual and textual graphs. (b) Two extended visual clus-
ters from the (left) visual and
textual clusters.

Figure 5. llustration of the propagation operation. Based on vi-
sual and textual graphs in (a), we can propagate auxiliary VWs
among the associated images in the extended visual clusters. (b)
shows the two extended visual clusters as the units for propaga-
tion respectively; each extended visual cluster include the visually
similar images and those co-occurrences in other textual clusters.

weights the whole features propagated from image j to ¢. If
we multiply the propagation matrix P and X (PX), we can
obtain anew M x D VW histograms, as the AVWs, for the
M images augmented by the NV images.

For each extended visual cluster, we desire to find a bet-
ter propagation matrix P, given the initial propagation ma-
trix Py (i.e., Pyo(¢,7) = 1, if both ¢ and j are semantically
related and within the same textual cluster). We propose to
formulate the propagation operation as

PX|?2 P— R
| PX % Jr(1_(1)|| ol %
P1 Npa

fp =mina (1)
The goal of the first term is to avoid from propagating too
many VWs since PX becomes new VW histogram matrix
after the propagation. And the second term is to keep the
similarity to the original propagation matrix (i.e., similar in
textual cluster). Np; = ||PoX||% and Npy = || Py||% are
two normalization terms and o modulates the importance
between the first and the second terms. We will investigate
the effects of o in Section 7.2. Note that the propagation
process updates the propagation matrix P on each extended
visual cluster separately as shown in Figure 5(b); therefore,
this method is scalable for large-scale dataset and easy to
adopt in a parallel way.

4.3. Common Visual Words Selection

Though the propagation operation is important to obtain
different VWs, it may include too many VWs and thus de-
crease the precision. To mitigate this effect and remove
those irrelevant or noisy VWs, we propose to select those
representative VWs in each visual cluster. We observe that
images in the same visual cluster are visually similar to each
other (cf. Figure 4(a)); therefore, the selection operation is
to retain those representative VWs in each visual cluster.

As shown in Figure 6(a), X; (X;) represents VW his-
togram of image 7 (j) and selection .S indicates the weight
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(a) Common VWs selection.

(b) Two examples.

Figure 6. Illustration of the selection operation. The VWs should
be similar in the same visual cluster; therefore, we select those
representative visual features (red rectangle). (b) illustrates the
importance (or representativeness) for different VWs. And we can
further remove some noisy features (less representative) which ap-
peared on the people or boat.

on each dimension. So XS indicates the total number of
features retained after the selection. The goal of selection is
to keep those common VWs in the same visual cluster (cf.
Figure 6(b)). That is to say, if S emphasizes more on those
common (representative) VWs, the XS will be relatively
large. Then the selection operation can be formulated as

| XSo — XS|%
Ng1

I1S11%
1—p)2lE —p
+ (1 - 5) Neo (2)

fs = min g
The second term is to reduce the number of selected fea-
tures in the visual clusters. The selection is expected to be
compact but should not incur too many distortions from the
original features in the visual clusters and thus regularized
in the first term, showing the difference of feature numbers
before (Sp) and after (S) the selection process. Note that
So will be assigned by one which means we select all the
dimensions. Ng; = [|[XSo||% and Ng2 = ||So||% are the
normalization terms and [ stands for the influence between
the first and the second terms and will be investigated in
Section 7.2.

4.4. Iteration of Propagation and Selection

The propagation and selection operations described
above can be performed iteratively. The propagation op-
eration obtains semantically relevant VWs to improve the
recall rate, whereas the selection operation removes visu-
ally irrelevant VWs and improves memory usage and effi-
ciency. An empirical combination of propagation and selec-
tion methods is reported in Section 7.1.

5. Optimization

In this section, we study the solvers for the two for-
mulations above (Eq. (1) and (2)). Before we start, note
that the two formulations are very similar. In particular, let

S =S — Sy, the selection formulation (2) is equivalent to

XS|2 S+ Spl|2
5“ ||F+(1_ﬂ)|\ + 5ol
s1 Ngo

3)

Given the similarity between Eq. (1) and (3), we can focus
on solving the former and then applying the same technique
on the latter.

5.1. Convexity of the Formulations

We shall start by computing the gradient and the Hessian
of Eq. (1) with respect to the propagation matrix P. Con-
sider the M by N matrices P and Py. We can first stack the
columns of the matrices to form two vectors p = vec(P)
and py = vec(FP), each of length M N. Then, we re-
place vec(PX) with (X7 ® I5;)p, where I is an iden-
tity matrix of size M and ® is the Kronecker product. Let
ap = NLP] > 0and ay = }{TO; > 0, the objective function
of Eq. (1) becomes

f(p)
=oq||(XT ® L )p|l3 + a2|lp — pol|3
=a1p" (X ® In)(XT @ Ing)p + a2 (p — po) ¥ (p — po)

Thus, the gradient and the Hessian are

Vi (p) =2(0n (X @ In ) (X" @ Ing)p + aa(p — po) JA)
Vaf(p)=2(a1(X @ In) (X" @ Ing) + azlun). (5)

Note that the Hessian (Eq. (5)) is a constant matrix. The
first term of the Hessian is positive semi-definite, and the
second term is positive definite because ao > 0. Thus, Eq.
(1) is strictly convex and enjoys an unique optimal solution.
From the analysis above, we see that Eq. (1) and (2)
are strictly convex, unconstrained quadratic programming
problems. Thus, any quadratic programming solver can be
used to find their optimal solutions. Next, we study two spe-
cific solvers: the gradient descent solver which iteratively
updates p and can easily scale up to large problems; the an-
alytic one which obtains the optimal p by solving a linear
equation and reveals a connection with the Tikhonov regu-
larization technique in statistics and machine learning.

5.2. Gradient Descent Solver (GDS)

The gradient descent solver optimizes Eq. (1) by starting
from an arbitrary vector pt®"t and iteratively updates the
vector by

pnew « pold _ nvpf(pold)7

where a small 7 > 0 is called the learning rate. We can then
use Eq. (4) to compute the gradient for the updates. Nev-
ertheless, computing (X ® I57)(X7T ® I5;) may be unnec-
essarily time- and memory-consuming. We can re-arrange
the matrices and get

(X&) (XT@Iy)p = (X®Iy)vec(PX) = vec(PX XT)



Then,

Vof(p) = 2aivec(PXXT) 4+ 2agvec(P — Pp)
= vec(201 PXXT 4 2a5(P — Py)).

That is, we can update p°'? as a matrix P°'¢ with the gra-
dient also represented in its matrix form. Coupling the up-
date scheme with an adaptive learning rate ), we get update
propagation matrix by

prew _ pold _ 277(a1POldXXT 4 OéQ(POld — PO))(6)

Note that we simply initialize p'*™ to vec(Pp).

For the selection formulation (Section 4.3), we can adopt
similar steps with two changes. First, Eq. (6) is replaced
with

B ~XTX(Sy—9) S >
s=s-2 (s L amp). o
Second, the initial point S*%%"* is set to a zero matrix since
the goal of selection formulation is to select representative
visual words (i.e., retain a few dimensions).

There is one potential caveat of directly using Eq. (7)
for updating. The matrix X7 X can be huge (e.g., 1M x
1M). To speed up the computation, we could keep only the
dimensions that occured in the same visual cluster, because
the other dimensions would contribute 0 to X7 X

5.3. Analytic Solver (AS)

Next, we compute the unique optimal solution p* of
Eq. (1) analytically. The optimal solution must satisfy
V,f(p*) = 0. Note that From Eq. (4),

Vpf(p*) = Hp* — 2aapo,

where H is the constant and positive definite Hessian ma-
trix. Thus,

p* =2a2H 'po.
Similar to the derivation in the gradient descent solver, we
can write down the matrix form of the solution, which is

P* = a2R)(OZ1XXT + QQI]V[)_l.

For the selection formulation, a direct solution from the
steps above would lead to

XTx Ip

xTX5,
+(1- -1 220
Ngy (1=4) Ngo

S* = B(8 e

) 3)

Nevertheless, as mentioned in the previous subsection,
the X7 X matrix in Eq. (8) can be huge (e.g., 1M x 1M). It
is a time-consuming task to compute the inverse of an 1M x
1M matrix. Thus, instead of calculating X Tx directly, we
transform X7 X to XX7T which is N by N and is much

smaller (e.g., 100 x 100). The transformation is based on
the identity of the inverse function

(A+ BBT)"'B=A"'B(I+BTA'B)"L
Then, we can re-write Eq. (8) as

XXxT
Ng1

+(1- Ay X5

8" =pXI(B Nss”  Ngi'
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Note that the analytic solutions of Eq. (1) and (2) are of a
similar form to the solutions of ridge regression (Tikhonov
regularization) in statistics and machine learning. The fact
is of no coincidence. Generally speaking, we are seeking
to obtain some parameters (P and S) from some data (X,
Py and Sp) while regularizing by the norm of the param-
eters. The use of the regularization not only ensures the
strict convexity of the optimization problem, but also eases
the hazard of overfitting with a suitable choice of « and 5.

6. Experimental Setup
6.1. Dataset

We use Flickr550 [20] as our main dataset in the exper-
iments. To evaluate the proposed approach, we select 56
query images (1282 ground truth images) which belong to
the following 7 query categories: Colosseum, Eiffel Tower,
Golden Gate Bridge, Tower de Pisa, Starbucks logo, Tower
Bridge, and Arc de Triomphe. Also, we randomly pick
up 10,000 images from Flickr550 to form a smaller sub-
set called Flickr11K. Some query examples are shown in
Figure 7.

6.2. Performance Metrics

In the experiments, we use the average precision, a
performance metric commonly used in the previous work
[11, 20], to evaluate the retrieval accuracy. It approximates
the area under a non-interpolated precision-recall curve for
aquery. A higher average precision indicates better retrieval
accuracy. Since average precision only shows the perfor-
mance for a single image query, we also compute the mean
average precision (MAP) over all the queries to evaluate the
overall system performance.

6.3. Evaluation Protocols

As suggested by the previous work [1 1], our image ob-
ject retrieval system adopts 1 million visual words as the ba-
sic vocabulary. The retrieval is then conducted by compar-
ing (indexing) the AVW features for each database image.
To further improve the recall rate of retrieval results, we
apply the query expansion technique of pseudo-relevance
feedback (PRF) [1], which expands the image query set by
taking the top-ranked results as the new query images. This
step also helps us understand the impacts of the discov-
ered AVWs because in our system the ranking of retrieved



Table 1. The MAP of AVW results with the best iteration number and PRF in Flickr11K with totally 22M (SIFT) feature points. Note that
the MAP of the baseline BoW model [14] is 0.245 and after PRF is 0.297 (+21.2%). #F represents the total number of features retained;
M is short for million. ‘%’ indicates the relative MAP gain over the BoW baseline.

Propagation — Selection

Selection — Propagation

Solver

MAP MAP by PRF (%) #F

MAP MAP by PRF (%) #F

Gradient descent solver (GD) || 0.375

0.516 (+110.6%) 0.3M || 0.342

0.497 (+102.9%) 0.2M

Analytic solver (AS) 0.384

0483 (+97.1%)  5.2M || 0.377

0.460 (+87.8%) 13.0M

2

i i

Figure 7. More search results by auxiliary VWs. The number represents its retrieval ranking. The results show that the proposed AVW
method, thought conducted in an unsupervised manner in the image collections, can retrieve more diverse and semantic related results.

images is related to the associated auxiliary visual words.
They are the key for our system to retrieve more diverse and
accurate images as shown in Figure 7 and Section 7.1. We
take L1 distance as our baseline for BoW model [14]. The
MAP for the baseline is 0.245 with 22M (millions) feature
points and the MAP after PRF is 0.297 (+21.2%).

7. Results and Discussions
7.1. The Performance of Auxiliary Visual Words

The overall retrieval accuracy is listed in Table 1. As
mentioned in Section 4.4, we can iteratively update the fea-
tures according to Eq. (1) and (2). It shows that the iter-
ation with propagation first (propagation — selection) can
have the best results. Since the first propagation will share
all the VWs with related images and then the selection will
choose those common VWs as representative VWs. How-
ever, if we do the iteration with selection first (i.e., selection
— propagation), we might lose some possible VWs after
the first selection. Experimental results show that we only
need one or two iterations to achieve better result because
those informative and representative VWs have been prop-
agated or selected in the early iteration steps. Besides, the
number of features are significantly reduced from 22.2M to
0.3M (only 1.4% retained), essential for indexing those fea-
tures by inverted file structure [14]. The required memory
size for indexing is proportional to the number of features.

In order to have the timely solution by gradient descent
solver, we set a loose convergence criteria for both prop-
agation and selection operations. Therefore, the solution
of the two solvers might be different. Nevertheless, Table
1 still shows that the retrieval accuracy of the two solvers
are very similar. The learning time for the first propagation
is 2720s (GD) and 123s (AS), whereas the first selection

needs 1468s and 895s for GD and AS respectively. Here we
fixed « = 0.5 and 8 = 0.5 to evaluate the learning time.’
By using analytic solver, we can get a direct solution and
much faster than the gradient descent method. Note that
the number of features will affect the running time directly;
therefore, in the remaining iteration steps, the time required
will decrease further since the number of features is greatly
reduced iteratviely. Meanwhile, only a very small portion
of visual features retained.

Besides, we find that the proposed AVW method is com-
plementary to PRF since we yield another significant im-
provement after conducting PRF on the AVW retrieval re-
sults. For example, the MAP of AVW is 0.375 and we can
have 0.516 (+37.6%) after applying PRF. The relative im-
provement is even much higher than PRF over the tradi-
tional BoW model (i.e., 0.245 to 0.297, +21.2%). More
retrieval results by AVW + PRF are illustrated in Figure 7,
which shows that the proposed AVW method can even re-
trieve semantically consistent but visually diverse images.
Note that the AVW is conducted in an unsupervised manner
in the image collections and requires no manual labels.

7.2. Parameter Sensitivity

Finally, we report the impact of sensitive tests on two
important parameters—propagation formulation («) and se-
lection formulation (/). The results are shown in Figure 8.
In the propagation formulation, o decides the number of
features needed to be propagated. Figure 8(a) shows that if
we propagate all the possible features to each image (i.e.,
a = (), we will obtain too many irrelevant and noisy fea-
tures which is helpless for the retrieval accuracy. Besides,

2The learning time is evaluated in MATLAB at a regular Linux server
with Intel CPU and 16G RAM.
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Figure 8. Parameter sensitivity on alpha and beta. (a) shows that
propagating too many features is not helpful for the retrieval accu-
racy. (b) shows that only partial features are important (represen-
tative) to each image. More details are discussed in Section 7.2.
Note that we can further improve retrieval accuracy by iteratively
updated AVW by propagation and selection processes.

the curve drops fast after o > 0.8 because it preserved few
VWs which might not appear in the query images. The fig-
ure also shows that if we set o around 0.6 we can have better
result but with fewer features which are essential for large-
scale indexing problem.

And for selection formulation, similar to «, 3 also influ-
ences the number of dimensions needed to be retained. For
example, if 5 = 0, we will not select any dimensions for
each image. And 8 = 1 means we will retain all the fea-
tures, and the result is equal to the BoW baseline. Figure
8(b) shows that if we just keep a few dimensions of VWs,
the MAP is still similar to BoW baseline though with some
retrieval accuracy decrease. Because of the spareness of
large VW vocabulary as mentioned in Section 3.1, we only
need to keep those important VWs.

8. Conclusions and Future Work

In this work, we show the problems of current BoW
model and the needs for semantic visual words to improve
the recall rate for image object retrieval. We propose to aug-
ment each database image with semantically related auxil-
iary visual words by propagating and selecting those infor-
mative and representative VWs in visual and textual clus-
ters. Note that we formulate the processes as unsupervised
optimization problems. Experimental results show that we
can greatly improve the retrieval accuracy compared to the
BoW model (111% relatively). In the future, we will fur-
ther look into the problem by L2-loss L1-norm optimiza-
tion which might preserve the sparseness for visual words.
We will also investigate different solvers to maximize the
retrieval accuracy and efficiency.
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