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Lesson 3: Ehrenfeucht-Fräıssé games

Theme: Limitations of first-order logic and relational algebra.

1 Partial isomoprhism

Let A = (A,R1, . . . , Rk) and B = (B,R1, . . . , Rk) be two databases over vocabulary τ =
{R1, . . . , Rk}. For ā = (a1, . . . , an) ∈ An and b̄ = (b1, . . . , bn) ∈ Bn, we write ā 7→ b̄ to de-
note the function that maps ai to bi. We call ā 7→ b̄ a partial isomorphism, if the following
holds.

• ai = aj if and only if bi = bj .

• For every Rl ∈ τ , for every 1 6 i1, . . . , iar(Rl) 6 n,

ai1 , . . . , aar(Rl) ∈ RA
l if and only if bi1 , . . . , bar(Rl) ∈ RB

l

2 Ehrenfeucht-Fräıssé (EF) games

The game. An Ehrenfeucht-Fräıssé (EF) game is played on two databasesA = (A,R1, . . . , Rk)
and B = (B,R1, . . . , Rk). There are two players: spoiler and duplicator. An n-round EF game
consists of n rounds, and each round consists of the following steps.

• The spoiler picks a structure (either A or B), and makes a move by picking an element in
that database: either a ∈ A or b ∈ B.

• The duplicator responds by picking an element in the other database.

The winning rule. Let ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) be the elements pick on A and
B, respectively, where ai and bi are the elements pick on the ith round. Duplicator wins, if ā 7→ b̄
is a partial isomorphism. Otherwise, Spoiler wins.

We say that Duplicator has winning strategy in an n-round EF game (played on A and B), if
Duplicator can play in a way that guarantees he/she wins in n rounds, regardless of how Spoiler
plays. We denote it by A ≡n B.

A simple, but useful, modification of EF games. Note that in the EF game described
above, the game always starts “fresh,” i.e., none of the elements from A or B are chosen in
advance. In this course, it is useful to define the EF games where some elements are already
chosen before the game starts.

The formal definition is as follows. As before, letA = (A,R1, . . . , Rk) and B = (B,R1, . . . , Rk)
be two databases. Let c̄ = (c1, . . . , cm) ∈ Am and d̄ = (d1, . . . , dm) ∈ Bm be the elements from
A and B, chosen before the game starts.

The rule of the game is the same as before, i.e., the Spoiler and Duplicator alternately pick
elements from A and B. After n rounds, suppose ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) be
the elements chosen from A and B, respectively. Duplicator wins, if (c̄, ā) 7→ (d̄, b̄) is a partial
isomoprhism. Otherwise, Spoiler wins. That Duplicator has winning strategy in an n-round game
played on (A, c̄) and (B, d̄) is defined similarly, in which case we denote by (A, c̄) ≡n (B, d̄).

Remark 3.1 If (A, c̄) ≡n (B, d̄), then (A, c̄) ≡m (B, d̄), for every m 6 n.
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3 EF games and first-order logic

The quantifier rank of a formula α, denoted by qr(α), is defined inductively as follows.

• The quantifier rank of an atomic formula is zero.

• qr(¬β) = qr(β).

• qr(β ∧ γ) = qr(β ∨ γ) = max(qr(β), qr(γ)).

• qr(∃x β) = qr(β) + 1.

Theorem 3.2 The following two statements are equivalent.

• (A, c̄) ≡n (B, d̄).

• For every formula ϕ(x̄) of quantifier rank 6 n,

(A, x̄ 7→ c̄) |= ϕ(x̄) if and only if (B, x̄ 7→ d̄) |= ϕ(x̄)

Proof. The proof is by induction on n. The base case n = 0 is straightforward, due to the
definition of partial isomoprhism.

For the induction hypothesis, we assume that the theorem holds for n. For the induction
step, we will show it for the case n+ 1.

First we show that the first statement implies the second. Assume that (A, c̄) ≡n+1 (B, d̄).
This means that for every Spoiler’s choice a ∈ A, Duplicator has an answer b ∈ B such that
(A, c̄, a) ≡n (B, d̄, b).

Now, let ∃yϕ(x̄, y) be of quantifier rank n + 1. If A, c̄ |= ∃yϕ(x̄, y), by definition, there is
a ∈ A such that A, c̄, a |= ϕ(x̄, y). Let b be Duplicator’s answer so that (A, c̄, a) ≡n (B, d̄, b).
By the induction hypothesis, (B, d̄, b) |= ϕ(x̄, y), which means (B, d̄) |= ∃yϕ(x̄, y). That (B, d̄) |=
∃yϕ(x̄, y) implies A, c̄ |= ∃yϕ(x̄, y) is similar.

Now, we show that the second statement implies the first. Suppose that for every formula
ϕ(x̄) of quantifier rank 6 n+ 1,

(A, x̄ 7→ c̄) |= ϕ(x̄) if and only if (B, x̄ 7→ d̄) |= ϕ(x̄) (1)

Assume to the contrary that (A, c̄) 6≡n+1 (B, d̄). This means there is α ∈ A such that for every
β ∈ B, we have

(A, c̄, α) 6≡n (B, d̄, β).

By the induction hypothesis, for every β ∈ B, there is a formula ψβ(x̄, y) of quantifier rank 6 n
such that

(A, x̄, y 7→ c̄, α) |= ψβ(x̄, y) and (B, x̄, y 7→ d̄, β) 6|= ψβ(x̄, y)

We negate the formula ψβ(x̄, y) in case:

(A, x̄, y 7→ c̄, α) 6|= ψβ(x̄, y) and (B, x̄, y 7→ d̄, β) |= ψβ(x̄, y)

Now, let B = {β1, . . . , βm}. Consider the formula:

ϕ(x̄) := ∃y
m∧
i=1

ψβi(x̄, y).

Then,

(A, x̄ 7→ c̄) |= ϕ(x̄) and (B, x̄ 7→ d̄) 6|= ϕ(x̄)
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Note that the quantifier rank of ϕ(x̄) is 6 n + 1. So, this contradicts the assumption (1), and
this completes our proof. �

Remark 3.3 EF games are a very useful tool to show that certain queries can not be expressed
by first-order formula, thus, also relational algebra expression. To prove a query Q(x̄) cannot
be expressed by FO formulas, typically the proof proceeds as follows.

(1) Assume to the contrary that Q(x̄) can be expressed by an FO formula ϕ(x̄), i.e., for every
database DB, Q(DB) = ϕ(DB).

Let n be the quantifier rank of ϕ.

(2) Construct two databases (A, ā) and (B, b̄) such that (A, x̄ 7→ ā) |= ϕ, but (B, x̄ 7→ b̄) 6|= ϕ.

(3) Describe the winning strategy for Duplicator on n-round EF game played on (A, ā) and
(B, b̄).

(4) Note that items (2) and (3) contradict each other, thus, we can conclude that Q(x̄) can not
be expressed by an FO formula.

For a more comprehensive treatment of EF games, see, for example, [1, 2, 3, 4].

Note that in our proof of Theorem 3.2 above, we assume the domain is finite. In general
Theorem 3.2 also holds for infinite domain, but the proof is more complicated. Please see the
references below for more details.
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