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Lesson 12: Linear programming

Theme: Linear programming.

1 Linear programming (LP)

An LP instance is defined as follows.

Input: (m× n)-matrix A with real entries, and c̄ = (c1, . . . , cn) ∈ Rn, b̄ = (b1, . . . , bm) ∈ Rm.

Task: Find x̄ = (x1, . . . , xn) > (0, . . . , 0) that

minimizes c1x1 + · · ·+ cnxn

subject to A

 x1
...
xn

 >
 b1

...
bm


We will write (A, b̄, c̄) to denote the above LP instance.

The function f(x̄) = c̄ · x̄ is called the objective function of LP, and the inequalities Ax̄t > b̄t

and x̄ > 0 are called the constraints of LP. Any x̄ that satisfies the constraints is called a feasible
solution, or simply, a solution. A solution x̄ such that f(x̄) is minimal is called an optimal
solution.

2 LP duality

The dual of an LP instance (in Section 1) is defined with the same input, but with the task to
find ȳ = (y1, . . . , ym) > (0, . . . , 0) that

maximizes b1y1 + · · ·+ bmym

subject to Atȳt 6 c̄t

Similar to above, any ȳ that satisfies the constraints Atȳt > c̄t and ȳ > 0 is called a solution,
and a solution ȳ with maximal b̄ · ȳ is called an optimal solution.

Theorem 12.1 (LP weak-duality) If x̄0 is a solution to an LP instance (A, b̄, c̄), and ȳ0 is a
solution to its dual, then x̄0 · c̄ > ȳ0 · b̄. Hence, if x̄0 · c̄ = ȳ0 · b̄, then x̄0 and ȳ0 are the optimal
solutions for (A, b̄, c̄) and its dual, respectively.

Proof. We have:

c̄ x̄t0 > ȳ0 A x̄t0 > ȳ0 b̄
t

The first inequality comes from ȳ0 A 6 c̄, while the second from A x̄t0 > b̄
t and ȳ0 > 0. �

Theorem 12.2 (LP strong-duality) If x̄0 is an optimal solution to an LP instance (A, b̄, c̄),
and ȳ0 is an optimal solution to its dual, then x̄0 · c̄ = ȳ0 · b̄.
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Proof. Let δ = c̄ · x̄0, i.e., the minimal possible value for the objective function of (A, b̄, c̄).
We want to show that there is ȳ > 0 such that Atȳt 6 c̄t and ȳ · b̄ > δ, which is equivalent to:(

At

−b̄

)
ȳt 6 (c̄,−δ)t

ȳ > 0

Suppose there is no such ȳ. By Farkas’ lemma (version 2), there is x̄, z > 0 such that

(A | −b̄t) (x̄, z)t > 0 and (c̄,−δ) · (x̄, z) < 0.

which is equivalent to:

A x̄t − zb̄t > 0 and c̄ · x̄ − δz < 0.

There are two cases.

• When z > 0.

Since Ax̄t − zb̄t > 0, we have Ax̄t > zb̄t, and so, A(x̄/z)t > b̄t. Therefore, (x̄/z) is a
solution to (A, b̄, c̄). Moreover, c̄ · (x̄/z) < δ, which contradicts the minimality of δ.

• When z = 0.

Then, Ax̄t > 0 and also, c̄ · x̄ < 0. Furthermore, for every ξ > 0,

A(x̄0 + ξx̄) = Ax̄0 + ξAx̄ > Ax̄0 > b̄.

So, x̄0 + ξx̄ is also a solution to (A, b̄, c̄). Now,

(x̄0 + ξx̄) · c̄ = x̄0 · c̄+ ξ(x̄ · c̄) = δ + ξ(x̄ · c̄).

Since x̄ · c̄ < 0, this contradicts the minimality of δ.

Therefore, there is some ȳ > 0 such that Atȳt 6 c̄t and ȳ · b̄ > δ. Since ȳ0 is an optimal solution,
ȳ0 · b̄ > ȳ · b̄ > δ. By weak duality, ȳ0 · b̄ 6 δ, which implies ȳ0 · b̄ = δ = x̄0 · c̄. �

Corollary 12.3 (Complementary slackness) If x̄0 = (x0,1, . . . , x0,n) and ȳ0 = (y0,1, . . . , y0,m)
are optimal solutions to an LP instance (A, b̄, c̄) and its dual, respectively, then we have the fol-
lowing.

• c̄ and ȳ0A agree on the coordinates in {i | x0,i 6= 0}.
• Ax̄t0 and b̄t agree on the coordinates in {j | y0,j 6= 0}.

In particular, if x̄0 > 0 and ȳ0 > 0, then Ax̄t0 = b̄t and Atȳt0 = c̄t.

Proof. As in the proof of weak duality, c̄ x̄t0 > ȳ0 A x̄t0 > ȳ0 b̄
t, and by strong duality,

c̄ x̄t0 = ȳ0 b̄
t, and hence, all the inequalities become equalities. In particular, (c̄− ȳ0A) · x̄0 = 0.

Since c̄ > ȳ0A, we have c̄− ȳ0A > 0. Furthermore, x̄0 > 0. Therefore, c̄ and ȳ0A must agree
on the coordinates in {i | x0,i 6= 0}. The second item can be proved in a similar manner. �
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Appendix

For more details about LP, see, for example, [1, 2].

Theorem 12.4 (Farkas’ lemma, version 1) Let x̄ and ȳ be vectors of variables, and M and
ā are matrix and vectors of appropriate length. Exactly one of the following systems of linear
inequalities has a solution, but not both.

• M ȳt = āt and ȳ > 0.

• M t x̄t > 0 and ā · x̄ < 0.

Proof. That it is impossible for both of them to have solution follows from the following.

Mȳt = āt ⇒ x̄Mȳt = x̄āt < 0

On the other hand, x̄Mȳt > 0ȳt = 0, which implies 0 < 0.
To show that one of them has a solution, suppose that Mȳt = āt and ȳ > 0 has no solution.

Define the space:

Π := {Mȳt | ȳ > 0}

Then, ā /∈ Π. Let p̄ be the point in Π with the minimal distance to ā (among all the points in
Π). Since the space Π is convex, for every ȳ > 0,

(p̄− ā) · (Mȳt − p̄) > 0 (1)

(p̄− ā)M(ȳt − ūt) > 0 (2)

where ū > 0 is such that ūM t = p̄. If there is ȳ > 0 such that (p̄− ā)M(ȳt − ūt) < 0, there will
be a point in Π strictly closer to ā than p̄, which contradicts the assumption that p̄ is the closest
point to ā from among all the points in Π.

We claim that x̄ = p̄− ā is a solution for M tx̄t > 0 and x̄ · ā < 0. From Equation 2,

x̄M(ȳt − ūt) > 0 for every ȳ > 0

If ȳ = ei, i.e., the unit vector with the i-th coordinate being 1, then the i-th coordinate of
x̄M > 0. Thus,

M tx̄t = x̄M > 0.

Now, we have to show that x̄ · ā < 0. Note that by plugging in ȳ = 0 in Equation 2,

0 > (ā− p̄)M(0− ūt) = (−x̄) · (−Mūt) = x̄ · p̄ (3)

Thus,
x̄ · ā = x̄ · (p̄− x̄) = x̄ · p̄− x̄ · x̄ > x̄ · p̄ > 0

The last inequality comes from Inequatity (3), and the second last from x̄ · x̄ > 0. �
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Corollary 12.5 (Farkas’ lemma, version 2) Exactly one of the following systems of linear
inequalities has a solution, but not both.

• M ȳt 6 āt and ȳ > 0.

• M t x̄t > 0, ā · x̄ < 0 and x̄ > 0.

Proof. That it is impossible for both of them to have solution is as before. Now, note that by
adding extra variables z̄, the constraint Mȳt 6 āt and ȳ > 0 is equivalent to Mȳt + z̄t = āt and
ȳ, z̄ > 0, which, in turn, can be written as:(

M | I
)
(ȳ, z̄)t = āt and ȳ, z̄ > 0

where I is the identity matrix. If it has no solution, by Farkas’ lemma above, the following
system has solution: (

M t

I

)
x̄t > 0 and ā · x̄ < 0,

where the left hand side is equivalent to M tx̄t > 0 and Ix̄t > 0. �

Geometric interpretation of Farkas’ lemma (version 1). It can be shown that Theo-
rem 12.4 is equivalent to the Theorem 12.6 below.

Recall that a half-space S can be defined by a vector c̄, where S = {p̄ | c̄ · p̄ > 0}. The cone
defined by vectors ū1, . . . , ūm is the following set.

cone(ū1, . . . , ūm) := {λ1ū1 + · · ·+ λmūm | λ1, . . . , λm > 0}.

Theorem 12.6 (Farkas’ lemma, intuitive version) Let ū1, . . . , ūm and ā be vectors such
that ā lies outside the cone defined by ū1, . . . , ūm. Then, there is a half-space S separating
ū1, . . . , ūm from ā, i.e., ū1, . . . , ūm ∈ S, but ā /∈ S.

The equivalence follows immediately by taking the column vectors of M as ūt1, . . . , ū
t
m, and

a solution for M tx̄t > 0 and ā · x̄ < 0 as the vector that defines the half-space S separating
ū1, . . . , ūm from ā.
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