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Lesson 11: Entropy

Theme: Review of basic probability theory and entropy.

1 A review on basic probability theory

A probability space is a system (Ω,Pr), where Ω is a set called sample space, and Pr : 2Ω → R
is a probability function satisfying the following conditions.

• Pr(Ω) = 1,

• 0 6 Pr(E) 6 1, for every E ∈ 2Ω,

• for any countably infinite sequence of pairwise disjoint sets E1, E2, . . ., Pr(
⋃

i>1Ei) =∑
i>1 Pr(Ei).

The sets in 2Ω are usually called events, and the singletons {e} elementary events. To avoid
too many bracketing, we will write Pr[E], instead of Pr(E), and Pr[e], instead of Pr[{e}]. We
will only deal with discrete probability space, i.e., when Ω is a countable set. Without loss of
generality, we can assume that Pr[e] > 0, for every e ∈ Ω.

We say that two events E and F are independent, if Pr[X ∩ Y ] = Pr[X] ·Pr[Y ]. Likewise,
a collection of events E1, . . . , Ek are independent, if for every I ⊆ {1, . . . , k},

Pr
[⋂
i∈I

Ei

]
=

∏
i∈I

Pr[Ei]

The conditional probability that event E occurs given that event F occurs is defined as:

Pr[E | F ] :=
Pr[E ∩ F ]

Pr[F ]

A (discrete) random variable is a function X : Ω → R. The probability of the event “X = a” is
defined as the probability of the event {e ∈ Ω | X(e) = a}, i.e.,

Pr[X = a] :=
∑

e∈Ω such that X(e)=a

Pr[e]

The probabilities Pr[X ~ a], where ~ ∈ {6,>, <,>, 6=} can be defined in a similar manner. We
say that a random variable X is uniformly distributed on range(X), if Pr[X = a] = Pr[X = b],
for every a, b ∈ range(X).

We say that two random variables X,Y are independent, if Pr[X = x ∩ Y = y] = Pr[X =
x] · Pr[Y = y], for every possible values x and y. Likewise, a collection of random variables
X1, . . . , Xk are independent, if for every I ⊆ {1, . . . , k}, for every i ∈ I, for every value xi,

Pr
[⋂
i∈I

Xi = xi

]
=

∏
i∈I

Pr[Xi = xi]

The expectation of a random variable X is defined as E[X] :=
∑

i i · Pr[X = i]. It is known
that for every two random variables X and Y , and for every constant c,

• E[X + Y ] = E[X] + E[Y ],

• E[cX] = cE[X].

A pair (X,Y ) of random variables can be viewed as a random variable Z with an appropri-
ate “pairing function” 〈·, ·〉, where Pr[Z = c] = Pr[(X = a, Y = b)], where 〈a, b〉 = c. For
convenience, we will simply write (X,Y ) to denote a random variable Z obtained in this way.
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2 Entropy

Here the logarithm is always of base 2, and the sample space is a finite set. The entropy H(X)
of a random variable X is defined as:

H(X) := −
∑

x ∈ range(X)

Pr[X = x] · log(Pr[X = x])

Proposition 11.1 For every random variable X, H(X) 6 log |range(X)|. Equality holds when
X is uniformly distributed on range(X).

Proof. We will show that
∑m

i=1 pi log(1/pi) 6 log(m), whenever
∑m

i=1 pi = 1. The proof is by
induction on m. The base case m = 2 is straightforward. The entropy H(X) can be viewed as
a function on p:

H(X) = p log(1/p) + (1− p) log(1/(1− p))

Taking the derivative of H(X) on p, we obtain that H(X) is maximal when p = 1/2. So,
H(X) 6 log 2.

The induction step is as follows. Without loss of generality, we assume m is even. If m is
odd, we can “split” one term p log(1/p) into two p/2 log(2/p) + p/2 log(2/p), and the inequality

is not effected since p log(1/p) 6 p log(2/p). Let λ =
∑m/2

i=1 pi. Then,

m∑
i=1

pi log(1/pi) =

m/2∑
i=1

pi log(1/pi) +

m∑
i=m/2+1

pi log(1/pi)

= λ

m/2∑
i=1

pi
λ

log(
λ

pi
· 1

λ
) + (1− λ)

m/2∑
i=m/2+1

pi
1− λ

log(
1− λ
pi
· 1

1− λ
)

6 λ

m/2∑
i=1

pi
λ

log(
λ

pi
) + λ

m/2∑
i=1

pi
λ

log(
1

λ
)

+ (1− λ)
m∑

i=m/2+1

pi
1− λ

log(
1− λ
pi

) + (1− λ)
m∑

i=m/2+1

pi
1− λ

log(
1

1− λ
)

= λ

m/2∑
i=1

pi
λ

log(
λ

pi
) + λ log(

1

λ
)

+ (1− λ)
m∑

i=m/2+1

pi
1− λ

log(
1− λ
pi

) + (1− λ) log(
1

1− λ
)

Applying induction hypothesis on the first and third terms,

m∑
i=1

pi log(1/pi) 6 λ log(m/2) + λ log(
1

λ
) + (1− λ) log(m/2) + (1− λ) log(

1

1− λ
)

6 log(m/2) + λ log(
1

λ
) + (1− λ) log(

1

1− λ
)

Applying the base case on the second and third terms,

m∑
i=1

pi log(1/pi) 6 log(m/2) + log 2 = logm
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�

For two random variables X and Y , the conditional entropy H(Y | X) is defined as:

H(Y | X) := −
∑
x,y

Pr[Y = y ∩X = x] · log(Pr[Y = y | X = x])

Proposition 11.2 If X and Y are independent random variables, then H(X | Y ) = H(X).

Proposition 11.3 For every random variables X,Y, Z, the following holds.1

• H(X,Y ) = H(X) +H(Y | X).

• H(X,Y | Z) = H(X | Z) +H(Y | Z,X).

Corollary 11.4 In general, for random variables X1, . . . , Xk,

H(X1, . . . , Xk) = H(X1) + H(X2 | X1) + · · · + H(Xk | X1, . . . , Xk−1).

Moreover, if X1, . . . , Xk are independent, then H(X1, . . . , Xk) = H(X1) + · · ·+H(Xk).

Proposition 11.5 Let X1, . . . , Xk, Y be random variables. Then, H(Y | X1, . . . , Xk) 6 H(Y |
X1, . . . , Xk−1). More generally, for every I ⊆ J ⊆ {1, . . . , k}, H(Y | XJ) 6 H(Y | XI), where
X{i1,...,im} denotes (Xi1 , . . . , Xim).

Proof. We will show that H(X,Y ) 6 H(X) + H(Y ), which combines with the fact that
H(X,Y ) = H(X) +H(Y | X), will imply H(Y | X) 6 H(Y ). Proposition 11.5 follows immedi-
ately by straightforward induction.

We need to use following claim.

Claim 1 log is concave, i.e., for every real numbers x, y, for every 0 6 λ 6 1,

λ log x + (1− λ) log y 6 log
(
λx + (1− λ)y

)
In general, for every x1, . . . , xm and every λ1, . . . , λm, where λ1 + · · ·+ λm = 1,

λ1 log x1 + · · · + λm log xm 6 log
(
λ1x1 + · · · + λmxm

)
What this claim states is that if we draw a line segment between two points (x, log x) and
(y, log y) in 2D, the line segment is always “below” the graph of the log function.

1Note that if we want to be technically correct, we should have written H((X,Y )), H((X,Y ) | Z), and
H(Y | (Z,X)) in this proposition. However, to avoid cumbersome brackets, we omit them.
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Now, back to calculating H(Y,X),

H(Y,X) =
∑
x,y

Pr[Y = y ∩X = x] · log
1

Pr[Y = y ∩X = x]

=
∑
x,y

Pr[Y = y ∩X = x] · log
Pr[X = x]Pr[Y = y]

Pr[Y = y ∩X = x]Pr[X = x]Pr[Y = y]

=
∑
x,y

Pr[Y = y ∩X = x] · log
Pr[X = x]Pr[Y = y]

Pr[Y = y ∩X = x]

+
∑
x,y

Pr[Y = y ∩X = x] · log
1

Pr[X = x]

+
∑
x,y

Pr[Y = y ∩X = x] · log
1

Pr[Y = y]

=
∑
x,y

Pr[Y = y ∩X = x] · log
Pr[X = x]Pr[Y = y]

Pr[Y = y ∩X = x]
+ H(X) + H(Y )

Using the fact that log is concave,

H(Y,X) 6 log
∑
x,y

Pr[Y = y ∩X = x]
Pr[X = x]Pr[Y = y]

Pr[Y = y ∩X = x]
+ H(X) + H(Y )

= log
∑
x,y

Pr[Y = y]Pr[X = x] + H(X) + H(Y )

= log 1 + H(X) + H(Y )

H(Y,X) 6 H(X) +H(Y )

This completes the proof of Proposition 11.5. �

3 Counting with entropy

The material in this section is taken from [2].

Proposition 11.6 Let {p1, . . . , pn} be a set of points in 3D with n1 distinct projections on the
(x, y) coordinates; n2 distinct projections on the (y, z) coordinates; n3 distinct projections on the
(x, z) coordinates. Then, n2 6 n1n2n3.

Proof. We pick randomly one of the n points with uniform distribution. Let P = (X,Y, Z) be
its random variable. Define the following random variables.

P1 := (X,Y ) P2 := (X,Z) P3 := (Y,Z)

By Corollary 11.4, we have:

H(P ) = H(X) + H(Y | X) + H(Z | X,Y )

H(P1) = H(X) + H(Y | X)

H(P2) = H(X) + H(Z | X)

H(P3) = H(Y ) + H(Z | Y )
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Then,

2H(P ) 6 2H(X) + 2H(Y | X) + 2H(Z | X,Y )

By Proposition 11.5, H(Y | X) 6 H(Y ) and H(Z | X,Y ) 6 H(Z | X), H(Z | Y ). So,

2H(P ) 6 H(P1) + H(P2) + H(P3).

By Proposition 11.1, H(P ) = log n, and H(P1) 6 log n1, H(P2) 6 log n2 and H(P3) 6 log n3.
This completes the proof of proposition. �

Theorem 11.7 (Shearer’s entropy lemma [1]) Let X1, . . . , Xn be random variables and
X = (X1, . . . , Xn). Let A1, . . . , Am ⊆ {1, . . . , n} such that every element i ∈ {1, . . . , n} appears
in at least k number of Ai’s. Then,

m∑
i=1

H(XAi) > k ·H(X)

Here, for a set B = {i1, . . . , il}, the random variable XB denotes (Xi1 , . . . , Xil).

Proof. By Corollary 11.4,

H(X) = H(X1) + H(X2 | X1) + · · · + H(Xk | X1, . . . , Xk−1).

H(XAj ) = H(Xi1) + H(Xi2 | Xi1) + · · · + H(Xilj
| Xi1 , . . . , Xilj−1

).

where Aj = {i1, . . . , ilj} and i1 < · · · < ilj .
Consider the sum:

m∑
i=1

H(XAj ) =
m∑
i=1

H(Xi1) + H(Xi2 | Xi1) + · · · + H(Xilj
| Xi1 , . . . , Xilj−1

).

Since every element i ∈ {1, . . . , n} appears in at least k number of Aj ’s, there are at least k
terms of the form H(Xi | XAj∩{1,...,i−1}) on the right side.

By Proposition 11.5,

H(Xi | XAj∩{1,...,i−1}) > H(Xi | X1, . . . , Xi−1)

Thus,

m∑
i=1

H(XAj ) > kH(X)

This completes our proof. �

Corollary 11.8 Let H = (V, E) be a hypergraph, and let {A1, . . . , Am} be a collection of subsets
of V . Suppose every element in V appears in at least k number of Ai’s. Let Ei = {e∩Ai | e ∈ E}.
Then,

|E|k 6
m∏
i=1

|Ei|
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Proof. Assume that V = {1, . . . , n}. We pick randomly a set e ∈ E with uniform distribution.
Let Z = (X1, . . . , Xn) be the characteristic random variable for e, i.e., each Xi is the indicator
random variable for i ∈ e. Thus, H(Z) = log |E|.

For each Aj , let Zj be the projection of Z to components in Aj . Then, H(Zj) 6 log |Ej |. By
Theorem 11.7, kH(Z) 6

∑m
j=1 H(Zj). Hence,

k log |E| 6
m∑
j=1

log |Ej |

This completes the proof of corollary. �
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