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Tutorial 6: Tree automata

(1) LetM be a bottom-up deterministic tree automata. Describe an algorithm for the following
problem.

MembershipM
Input: A tree T

Task: Output “Yes,” if T ∈ L(M). Otherwise, output “No.”

What if M is non-deterministic?

(2) Describe an algorithm for the following problem.

Membership

Input: A tree T and a deterministic bottom-up tree automata M.

Task: Output “Yes,” if T ∈ L(M). Otherwise, output “No.”

What if M is non-deterministic?

Appendix

Let Σ = {a1, . . . , am}. A Σ tree T = (r, I, F, `ab) can be viewed as a first-order structure:

AT = (I, succ0, succ1, Pa1 , . . . , Pam)

where

• succ0(u, v) holds, if and only if v is the left child of u;

• succ1(u, v) holds, if and only if v is the right child of u;

• for every ai ∈ Σ, for every u ∈ I, Pai(u) holds if and only if `ab(u) = ai.

First-order logic for trees can be defined with relations succ0, succ1, Pa1 , . . . , Pam . Monadic Sec-
ond Order (MSO) logic is defined by allowing quantification over subsets of the domain:

∀X ϕ or ∃X ϕ

where X is a “new” unary relation symbol that can be used inside ϕ. Intuitively, they mean
“for every possible set X, ϕ hold” and “there is a set X such that ϕ holds.” We can write L(ϕ)
to be the set of all trees for which ϕ holds.

It is known that for every (bottom-up) tree automata M, there is an MSO sentence ϕ such
that L(M) = L(ϕ). Vice versa, for every MSO sentence ϕ, there is a (bottom-up) tree-automata
M such that L(M) = L(ϕ). For more details, please consult [1, 2].
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