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Lesson 12: Linear programming

Theme: Linear programming.

1 Linear programming (LP)
An LP instance is defined as follows.

Input: (m x n)-matrix A with real entries, and ¢ = (c1,...,¢,) € R*, b= (b1,...,bn) € R™.
Task: Find 7 = (z1,...,2,) 2> (0,...,0) that

minimizes cix1+ -+ epxy
71 b1
subject to A : >
Tn bm

We will write (A, b,¢) to denote the above LP instance.

The function f(Z) = ¢- 7 is called the objective function of LP, and the inequalities AzZ* > b
and T > 0 are called the constraints of LP. Any T that satisfies the constraints is called a feasible
solution, or simply, a solution. A solution Z such that f(Z) is minimal is called an optimal
solution.

2 LP duality

The dual of an LP instance (in Section 1) is defined with the same input, but with the task to
find g: (y17"'7ym) 2 (O,,O) that

maximizes biyr + - + bym
subject to  A'g' < ¢

Similar to above, any 7 that satisfies the constraints Aly’ > & and 4 > 0 is called a solution,
and a solution ¢ with maximal b - 4 is called an optimal solution.

Theorem 12.1 (LP weak-duality) If zy is a solution to an LP instance (A,b,€), and o is a
solution to its dual, then To-¢ > 4o - b. Hence, if To-¢ = 3o - b, then Tg and 7o are the optimal
solutions for (A,b,¢) and its dual, respectively.

Proof. We have:

cry = JoATy = b

The first inequality comes from 3o A < &, while the second from A z} > b and 7y > 0. [ ]

Theorem 12.2 (LP strong-duality) If Zo is an optimal solution to an LP instance (A,b,¢),
and o is an optimal solution to its dual, then Tg-¢ = 7o - b.
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Proof. Let § = ¢- Zo, i.e., the minimal possible value for the objective function of (A, b, ).
We want to show that there is 3 > 0 such that A'y* < & and 3-b > §, which is equivalent to:

(%)

(77 _6)t
gy =2 0

N

Suppose there is no such y. By Farkas’ lemma (version 2), there is z, z > 0 such that
(A =b" (z,2) = 0 and (¢,—90)-(z,z) < 0.
which is equivalent to:
Azt — 20t > 0 and c-T — 0z < 0.
There are two cases.

e When z > 0.

Since Az! — zl_)f > 0, we have Az' > 2b!, and so, A(Z/z)! > b'. Therefore, (z/2) is a
solution to (A,b,¢). Moreover, ¢- (Z/z) < §, which contradicts the minimality of ¢.

e When z = 0.
Then, Az! > 0 and also, é-Z < 0. Furthermore, for every & > 0,

A(zo+ &) = Azg+EAT > Ay > b.
So, Zo + &7 is also a solution to (A, b,¢). Now,
(Zo+&x)-¢ = Tp-c+&(x-¢) = 0+&(T-¢).
Since T - ¢ < 0, this contradicts the minimality of 4.

Therefore, there is some y > 0 such that At <t andg-b> 6 . Since Yo is an optimal solution,
Yo b>=1y-b>=4. By weak duality, go - b < &, which implies 5o - b= = Z¢ - C. |

Corollary 12.3 (Complementary slackn_ess) Ifzo = (z0,1,- .-, %on) and Yo = (Yo,1,- - - Yo,m)
are optimal solutions to an LP instance (A,b,¢) and its dual, respectively, then we have the fol-
lowing.

e ¢ and Yo A agree on the coordinates in {i| xo; # 0}.

o Azl and b agree on the coordinates in {j | yoj # 0}.

In particular, if To > 0 and 5o > 0, then Azl = bt and Alyh = &.

Proof. As in the proof of weak duality, ¢ 7§ > %o A zf > %o b', and by strong duality,

¢zh = 7o b', and hence, all the inequalities become equalities. In particular, (¢ — 7o A) - Zo = 0.
Since ¢ > 7oA, we have ¢ — ypA > 0. Furthermore, Tg > 0. Therefore, ¢ and 39A must agree
on the coordinates in {i | z9; # 0}. The second item can be proved in a similar manner. [ |

2/4



CSIE 7242: Advanced topics in database theory (Sem. 2, 2015/2016) Lesson 12: Linear programming

References

[1] V. Chvatal. Linear Programming. W. H. Freeman, 1983.

[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms (3. ed.). MIT
Press, 2009.

Appendix
For more details about LP, see, for example, [1, 2].

Theorem 12.4 (Farkas’ lemma, version 1) Let T and § be vectors of variables, and M and
a are matrix and vectors of appropriate length. FExactly one of the following systems of linear
inequalities has a solution, but not both.

e Myt =a' andy > 0.
e Mzt >0anda-z <0.

Proof. That it is impossible for both of them to have solution follows from the following.

t

My =a" = zMy'=za" < 0

On the other hand, ZM#' > 0" = 0, which implies 0 < 0.
To show that one of them has a solution, suppose that M#' = a* and i > 0 has no solution.
Define the space:

I = {My|y=>0}

Then, a ¢ II. Let p be the point in IT with the minimal distance to a (among all the points in
IT). Since the space II is convex, for every y > 0,

(p—a)- (My"—p) (1)
(p—a)M(y' —u') (2)

where 4 > 0 is such that aM® = p. If there is § > 0 such that (p — a)M (7" — @') < 0, there will
be a point in II strictly closer to a than p, which contradicts the assumption that p is the closest
point to a from among all the points in II.

We claim that £ = p — a is a solution for M*z* > 0 and z - @ < 0. From Equation 2,

= 0
= 0

Mgt —a') > 0 for every 7 > 0

Mzt = zM > 0.

Now, we have to show that Z -a < 0. Note that by plugging in § = 0 in Equation 2,

0 > (@-pMO-a') = (-7) - (-Md') = z-p (3)
Thus,
Ta=z-(p—%) =2-p—%-T 2 x-p =0
The last inequality comes from Inequatity (3), and the second last from z -z > 0. |
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Corollary 12.5 (Farkas’ lemma, version 2) FEzactly one of the following systems of linear
inequalities has a solution, but not both.

o M it <al and y > 0.
e Mzt >0,a-2<0 andz > 0.
Proof. That it is impossible for both of them to have solution is as before. Now, note that by

adding extra variables z, the constraint M4 < @' and 4 > 0 is equivalent to My’ + z! = a* and
Y,z = 0, which, in turn, can be written as:

(M |I)(g,2)" =a and 3,220

where I is the identity matrix. If it has no solution, by Farkas’ lemma above, the following
system has solution:

t
<]V}[ )xt >0 and a-z<0,

where the left hand side is equivalent to M!z! > 0 and Iz! > 0. |

Geometric interpretation of Farkas’ lemma (version 1). It can be shown that Theo-
rem 12.4 is equivalent to the Theorem 12.6 below.
Recall that a half-space S can be defined by a vector ¢, where S = {p | c¢-p > 0}. The cone

defined by vectors @1, ..., Uy, is the following set.
cone(ty,...,uUy) = {ANUL+ -+ Aplm | A1y, Am = 0}
Theorem 12.6 (Farkas’ lemma, intuitive version) Let uy,...,uy, and a be vectors such
that a lies outside the cone defined by u1,...,Un. Then, there is a half-space S separating
Uly ... Uy from a, i.e., Uy, ..., Um €S, but a ¢ S.
The equivalence follows immediately by taking the column vectors of M as ul,...,ul,, and

a solution for M!z! > 0 and @ -Z < 0 as the vector that defines the half-space S separating
U, ..., Uy, from a.
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