CSIE 7242: Advanced topics in database theory (Sem. 2, 2015/2016) Lesson 1: First-order logic in database

Lesson 1: First-order logic in database

Theme: Databases as first-order structures, and first-oder logic as their query language.

1 Databases as relational structures

Let 7 = {Ry,...,R;} be a finite set of symbols, called vocabulary. Each symbol R; is called a
relation symbol, and is associated with a positive integer called its arity, denoted by ar(R;). We
usually write R, S, T, ..., possibly indexed, to denote relation symbols.

A database (over vocabulary 7) is DB = (U, RPB, ..., RPB) where

e U is a finite set of elements, called the domain of DB;

e cach RPB is a relation over U of arity ar(R;), i.e., RP® C U»(£),

The superscripts DB in RP B is to indicate that we are talking about R; in the database
DB. When DB is clear from the context, we will usually omit the superscript. Furthermore, in
database context, every element v € U appears in at least one of the relations Ry, ..., Rg. So,
when mentioning DB, it is not necessary to write the domain U. From now on, we will only
write DB = (R, ..., Ry) to denote a database over vocabulary 7 = (R1,..., Ry).

We will usually write a to denote (ay,...,a;) for some appropriate [. For example, we will
simply write R(a) € DB to indicate that the tuple a = (ai,...,q;) is in the relation R in DB,
where [is the arity of R.

2 First-order logic for querying databases

We reserve a set VAR of variables: &, 21,22, ..., Y, Y1, Y2, -+ 2, 21, 22, « -

Syntax. First-order (FO) formulas over the vocabulary 7 are defined inductively as follows.

o If z,y € Var are variables, then z ~ y is an FO formula over .

o If x1,...,2, € VAR are variables, and R € 7 is a relation symbol of arity n, then
R(z1,...,xy,) is an FO formula over 7.

e If o and 8 are FO formulas over 7, then so are -« and a A .
o If ais an FO formula over 7, and = € VAR, then so is Jz(a).
Formulas = ~ y and R(x1,...,z,) are called atomic formulas. To avoid clutter, we will simply
say “formula” to mean “FO formula over 7.”
The set of free variables of a formula «, denoted by free(«), is defined inductively as follows.
o If o is an atomic formula x ~ y, then free(a) = {z,y}.
e If o is an atomic formula R(zy,...,z,), then free(a) = {z1,...,2,}.
free(—f) = free(p).
free(B N y) = free(5) U free(ry).
free(Jz B) = free(5) — {=}.

Formulas without free variables are called sentences, or closed formulas. Otherwise, they are
called open formulas. Sometimes, we will write ¢(x1,...,2,) to indicate that the free variables
in ¢ are z1,...,x,. We will write ¢(Z) to denote p(z1,...,%,).

1/2

CSIE 7242: Advanced topics in database theory (Sem. 2, 2015/2016) Lesson 1: First-order logic in database

Semantics. Let DB be a database and U be its domain. An assignment over DB is a function
val : VAR — U. For x € VAR and a € U, we denote by val[z — a] the assignment obtained from
s by changing the value of val(z) to a, while the values for the other variables are left untouched.
Formally,

val[z — a](z)

a if zis 2
val(xz) for any variable x other than z

Let ¢ be a formula. For an assignment val and a database DB, we define DB, val = ¢ (read: “p
holds in database DB = (Ry, ..., Ry) under the assignment val”) inductively as follows.

e (DB,val) = z =~ y, if and only if val(z) = val(y).
DB, val) = R(z), if and only if R(val(z)) € DB.

()
()
(DB, val) = —a, if and only if it is not true that (DB, val) = «.
()
)

DB, val) = a A S, if and only if (DB, val) = « and (DB, val) = .
e (DB,val) = 3z «a, if and only if there is a € U such that (DB, vallz — a]) = a.

Note that the values of the assignment val on variables other than free variables are not important
in deciding (DB, val) = ¢. So, we will usually omit val, and only indicate the values assigned to
free variables. That is, we will simply write:

(DB, z1 — a1, ...,z — ay) E ¢(T) or, in short (DB, z+—a) E »(7)

Querying database with FO formulas. Let ¢(Z) be a formula. On database DB, we define:

@(z)(DB) = {a|DB,z—al¢ }

When the free variables Z are clear from the context, we will omit them and simply write ¢(DB).
For a sentence ¢, ¢(DB) is either True or False. Such query is called Boolean query.

Appendix

Database as a collection of tables. In our representation of database, we write R(z, vy, z) to
access the tuples in a relation R by “denoting” the first, the second, and the third components
with z, y and z, respectively. A more standard representation of databases is by viewing a
relation R as a set of ar(R) number of attributes. For example, for a relation R of arity 3,
R.atty, R.atto and R.atts are used to access the first, the second, and the third component of
the tuples in relation R, respectively.

2/2

