
CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 6: The complexity classes for counting

Lesson 6: The complexity classes for counting

Theme: The complexity classes for counting problems and the complexity of computing perma-
nent.

1 Complexity classes for counting problems

1.1 The class FP

We denote by FP the class of functions f : {0, 1}∗ → N computable by polynomial time DTM.
Here the convention is that a natural number is always represented in binary form. So, when we
say that a DTMM computes a function f : {0, 1}∗ → N, on input word w, the output ofM on
w is f(w) in the binary representation.

Let]CYCLE be the following problem.

]CYCLE

Input: A directed graph G.
Task: Output the number of cycles in G.

As before,]CYCLE can also be viewed as a function. Note also that the number of cycles in a
graph with n vertices is at most exponential in n, thus, its binary representation only requires
polynomially many bits.

Theorem 6.1 If]CYCLE is in FP, then P = NP.

Proof. Let G be a (directed) graph with n vertices. We construct a graph G′ obtained by
replacing every edge (u, v) in G with the following gadget:

u

a1

b1

a2

b2

. . .

. . .

am−1

bm−1

am

bm

v

Note that every simple cycle in G of length ` becomes (2m)` cycles in G′. Now, let m def
= n log n.

It is not difficult to show that G has a hamiltonian cycle (i.e., a simple cycle of length n) if
and only if G′ has more than n(n2) cycles. So, if]CYCLE ∈ FP, then checking hamiltonian cycle
can be done is in P.

Note that checking whether a graph has a cycle itself can be done in polynomial time. How-
ever, as Theorem 6.1 above states, it is unlikely that counting the number of cycles can be done
in polynomial time.

1.2 The class]P

Definition 6.2 A function f : {0, 1}∗ → N is in]P, if there is a polynomial q(n) and a polyno-
mial time DTMM such that for every word w ∈ {0, 1}∗, the following holds.

f(w) = |{y :M accepts (w, y) and y ∈ {0, 1}q(|w|)}|

1/7

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 6: The complexity classes for counting

Alternatively, we can say that f is in]P, if there is a polynomial time NTM M such that for
every word w ∈ {0, 1}∗, f(w) = the number of accepting runs ofM on w.

For a function f : {0, 1}∗ → N, the language associated with the function f , denoted by Of ,
is defined as Of

def
= {(w, i) : the ith bit of f(w) is 1}. When we say that a TM M has oracle

access to a function f , we mean that it has oracle access to the language Of .
We define FPf as the class of functions g : {0, 1}∗ → N computable by a polynomial time

DTM with oracle access to f .

Definition 6.3 Let f : {0, 1}∗ → N be a function.

• f is]P-hard, if]P ⊆ FPf , i.e., every function in]P is computable by a polynomial time
DTM with oracle access to f .

• f is]P-complete, if f ∈]P and f is]P-hard.

Let]SAT be the following problem.

]SAT

Input: A boolean formula ϕ.
Task: Output the number of satisfying assignments for ϕ.

As before, the output numbers are to be written in binary form. We can also view]SAT as a
function]SAT : {0, 1}∗ → N, where]SAT(ϕ) = the number of satisfying assignment for ϕ.

Theorem 6.4]SAT is]P-complete.

Proof. Cook-Levin reduction (to prove the NP-hardness of SAT) is parsimonious.

There are usually two ways to prove a certain function is]P-hard, as stated in Remark 6.5
and 6.6 below.

Remark 6.5 Let f1 and f2 be functions from {0, 1}∗ to N. Suppose L1 and L2 be languages in
NP such that f1 and f2 are the functions for the number of certificates for L1 and L2, respectively.
That is, for every word w ∈ {0, 1}∗,

fi(w) = the number of certificates of w in Li, for i = 1, 2.

If f1 is]P-hard and there is a parsimonious (polynomial time) reduction from L1 to L2, then
f2 is]P-hard.

Remark 6.6 Let f and g be two functions from {0, 1}∗ to N. If f is]P-hard and f ∈ FPg,
then g is]P-hard.

Since there is a parsimonious reduction from SAT to 3-SAT, by Theorem 6.4 and Remark 6.5,
we have the following corollary.

Corollary 6.7]3-SAT is]P-complete.

Corollary 6.7 can also be proved by showing]SAT ∈ FP]3-SAT.

2/7

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 6: The complexity classes for counting

2 The complexity of computing the permanent

2.1 Definition of permanent

For an integer n > 1, let [n] = {1, . . . , n}. The permanent of an n× n matrix A over integers is
defined as:

per(A)
def
=

∑
σ

n∏
i=1

Ai,σ(i)

where σ ranges over all permutation on [n]. Here Ai,j denotes the entry in row i and column j
in matrix A.

Consider the following problem.

PERM

Input: A square matrix A over integers.
Task: Output the permanent of A.

We denote it by 0|1-PERM, when the entries in the input matrix A are restricted to 0 or 1.

Theorem 6.8 (Valiant 1979) 0|1-PERM is]P-complete.

To show that 0|1-PERM is in]P, consider the following algorithm.

Input: A 0-1 matrix A.
1: Guess a permutation σ on [n], i.e., for each i ∈ [n], guess a value vi ∈ [n].
2: If the guessed σ is not a permutation, REJECT.
3: Compute the value

∏n
i=1Ai,σ(i).

4: ACCEPT if and only if the value is 1.

It is obvious that on input A, the number of accepting runs is the same as per(A).

2.2 Combinatorial view of permanent

Let G = (V,E,w) be a complete directed graph, i.e., E = V × V , and each edge (u, v) has a
weight w(u, v) ∈ Z. We write a (simple) cycle as a sequence p = (u1, . . . , u`), and its weight is
defined as:

w(p)
def
= w(u1, u2) · w(u2, u3) · . . . · w(u`−1, u`) · w(u`, u1)

A loop (u, u) is considered a cycle.
A cycle cover of G is a set R = {p1, . . . , pk} of pairwise disjoint cycles such that for every

vertex u ∈ V , there is a cycle pj ∈ R such that u appears in pj . The weight R is defined as:

w(R)
def
=

∏
pj∈R

w(Cj)

Note that a cycle or a cycle cover can also be viewed as a set of edges.
Assuming that the vertices in G are {1, . . . , n}, let A be the adjacency matrix of G, i.e., A is

an (n× n) matrix over Z such that Ai,j = w(i, j).
A permutation σ = (d1,1, . . . , d1,k1), . . . , (dl,1, · · · , dl,kl) on [n] can be viewed as a cycle cover

whose weight is exactly the value
∏
i∈[n]Ai,σ(i). Thus, we have the equation:

per(A) =
∑

R is a cycle cover of G

w(R)

3/7

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 6: The complexity classes for counting

3 Reduction from 3-SAT to cycle cover

In this section we will show how to encode 3-SAT as the cycle cover problem.

3.1 Overview of the main idea

Let Ψ be a formula in 3-CNF. Let x1, . . . , xn be the variables and C1, . . . , Cm be the clauses. We
will construct a complete directed graph G = (V,E,w), where the weight of each edge can be
arbitrary integer and every boolean assignment φ : {x1, . . . , xn} → {0, 1} is associated with a set
Fφ of cycle covers of G such that the following holds.

• For two different assignments φ1, φ2, the sets Fφ1 and Fφ2 are disjoint.

• If φ is a satisfying assignment for Ψ, the total weight of cycle covers in Fφ is 43m, i.e.,∑
R∈Fφ

w(R) = 43m

• If φ is not a satisfying assignment for Ψ, the total weight of cycle covers in Fφ is 0, i.e.,∑
R∈Fφ

w(R) = 0

• The total weight of cycle covers not in any Fφ is 0, i.e.,∑
R/∈Fφ for any φ

w(R) = 0

If A is the adjacency matrix of G, it is clear that:

per(A) = 43m × (the number of satisfying assignment for Ψ)

3.2 The construction of the graph G

In the following we will draw an edge with a label indicating its weight. If the label is missing,
it means the weight is 1. When an edge is not drawn, it means the weight is 0.

Variable gadget. For each variable xi, we have the following “variable gadget”:

si

ai,1

bi,1

ai,2

bi,2

. . .

. . .

ai,m

bi,m

ai,m+1

bi,m+1

ti

The upper edges, i.e., (ai,1, ai,2), . . . , (ai,m, ai,m+1), are called the external “true” edges of xi, and
the lower edges, i.e., (bi,1, bi,2), . . . , (bi,m, bi,m+1), the external “false” edges of xi.

4/7

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 6: The complexity classes for counting

Clause gadget. For each clause Cj , we have the following “clause gadget”:

zj

dj

ej fj

The “outer” edges (dj , ej), (ej , fj), (fj , dj) are intended to represent the literals in Cj . If `1, `2, `3
are the literals in Cj , then their associated edges are (dj , ej), (ej , fj), (fj , dj), respectively. To
avoid clutter, we will call those edges `1-edge, `2-edge and `3-edge, respectively.

The XOR operator. We also have the “XOR operator” between two edges (u1, u2) and (v1, v2):

u1 u2

α1

α2

α3

α4

v2 v1
−1

-1

2

3

−1

Definition 6.9 Let H be a graph, and let (u1, u2) and (v1, v2) are two non-adjacent edges in H.

• For a cycle cover R of H, we say that R respects the property (u1, u2)⊕(v1, v2), if R contains
exactly one of (u1, u2) or (v1, v2).

• Let H ′ denotes the graph obtained from H by replacing the edges (u1, u2), (v1, v2) with the
edges in the XOR operator above.

A cycle cover R′ of H ′ is an associated cycle cover of R, if it satisfies the following condiiton.

– If R contains (u1, u2), then R′ contains a path from u1 to u2.

– If R contains (v1, v2), then R′ contains a path from v1 to v2.

– R \ {(u1, u2), (v1, v2)} ⊆ R′.

5/7

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 6: The complexity classes for counting

Lemma 6.10 Let H,H ′, R and (u1, u2), (v1, v2) be as in Definition 6.9. Then, the following
holds. ∑

R′ is associated with R

w(R′) =

{
4w(R), if R respects (u1, u2)⊕ (v1, v2)
0, otherwise

Constructing the graph G. The graph G is defined as the disjoint union of all the variable
and clause gadgets and the following additional edges to connect them: For every clause Cj , for
every literal ` in Cj , if ` = xi, we “connect” the `-edge in the clause gadget of Cj with the edge
(ai,j , ai,j+1) via the XOR operator; and if ` = ¬xi, we “connect” it with the edge (bi,j , bi,j+1).

For an assignment φ : {x1, . . . , xn} → {0, 1}, we say that a cycle cover R is associated with
φ, if the following holds for every variable xi.

• If φ(xi) = 1, the cycle (si, ai,1, . . . , ai,m+1, ti) is in R.

• If φ(xi) = 0, the cycle (si, bi,1, . . . , bi,m+1, ti) is in R.

Lemma 6.11 For every assignment φ : {x1, . . . , xn} → {0, 1}, the following holds.∑
R is associated with φ

w(R) =

{
43m, if φ is satisfying assignment for Ψ
0, if φ is not

Combining Lemmas 6.10 and 6.11, it is immediate that the following holds.

per(A) = 43m × (the number of satisfying assignments for Ψ)

Here A is the adjacency matrix of G.

4 Reduction from matrices over Z to matrices over {0, 1}
Reduction to matrices over integers of the form −2k, 0 or 2k. For each edge (u, v) with
weight 2k + 2l, we can replace it with 2 “parallel” edges with weights 2k and 2l, respectively.

u v

z1

z2

2k

2l

Reduction to matrices over integers of the form −1, 0 or 1. For each edge (u, v) with
weight 2k, we can replace it with k “series” edges, each with weights 2.

u v
z1 z2 zk−1

. . .2 2 2

Each weight 2 edge can be further reduced to weight 1 edge as above.

Reduction to matrices over {0, 1} (but on modular arithmetic). The permanent of an
n×n matrix A over {−1, 0, 1} can only in between −n! and n!. Let m = n2. Since 2m+ 1 > 2n!,
it is sufficient to compute per(A) in Z2m+1. Since −1 ≡ 2m (mod 2m+1), we can replace each −1
with 2m, which can then be reduced to 1 as above.

6/7

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 6: The complexity classes for counting

5]P-hardness of PERM – Putting all the pieces together

Putting together all the pieces from Sections 3 and 4, we design a polynomial time algorithm to
compute]3-SAT (with oracle access to language Oper, i.e., the language associated with perma-
nent). On input 3-CNF formula Ψ, do the following.

• Let n and m be the number of variables and clauses in Ψ.

• Construct a matrix A over {−1, 0, 1} such that per(A) is 43m times the number of satisfying
assignments for Ψ.

• Let m be an integer for which we can compute per(A) modulo 2m + 1.

• Let A′ be the matrix obtained by replacing every −1 in A with 2m.

• Compute per(A′) by querying the oracle on each bit.

• Let Z be the remainder of per(A′) divided by 2m + 1.

• Divide Z by 43m and output it.

7/7

	Complexity classes for counting problems
	The class FP
	The class P

	The complexity of computing the permanent
	Definition of permanent
	Combinatorial view of permanent

	Reduction from 3-SAT to cycle cover
	Overview of the main idea
	The construction of the graph G

	Reduction from matrices over Z to matrices over {0,1}
	P-hardness of PERM – Putting all the pieces together

