CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 9: Toda’s theorem

Lesson 9: Toda’s theorem

Theme: Toda’s theorem which states that every language in the polynomial hierarchy can be
decided by a polynomial time DTM with oracle access to #SAT, i.e., PH C P#AT,

Theorem 9.1 (Toda, 1991) PH C P*F.

1 Reduction from &SAT to SAT

In the following we will use the notations from Note 11. Recall that f denote the number of
satisfying assignments of a (Boolean) formula ¢. For formulas ¢ and v, the formula ¢ M is a
formula such that (¢ M) = e - 2.

We define an operation + as follows. Let z1,...,x, and yi, ..., ym be the variables in ¢ and
1, respectively. Let z be a new variable.

o+ def (@/\z/\/\yi) \Y (1/1/\ﬂz/\/\xi)
=1 =1
Note that #(¢ + 1) = fo + fih.

Lemma 9.2 There is a deterministic polynomial time algorithm T, that on input formula ¢ and
positive integer m (in unary), outputs a formula 1 such that the following holds.

o If o € ®SAT, then #1p = —1 (mod 2mH1).

o If o & ®SAT, then #1p =0 (mod 2™F1).

Proof. We will use the following identity for each ¢ > 0 and n.
(a) If n = —1 (mod 22), then 4n3 + 3n* = —1 (mod 22).
(b) If n =0 (mod 22'), then 4n3 + 3n* =0 (mod 22").

On input ¢ and m, the algorithm 7 does the following.

e For each i =0,1,...,[log(m + 1)], define a formula 1); as follows.

% ifi=0
a3+ 3l ifi>1

def

i =
Here 4402 | + 31} , denotes the formula that has 4f(1; 1) + 3f(t;_1)? satisfying assign-
ments. Such formula can be constructed using the operators + and M.
e Output the formula ¥og(m1)]-

It is not difficult to show that the algorithm 7 runs in polynomial time. Its correctness follows
directly from the identities (a) and (b). |

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 9: Toda’s theorem

2 Proof of Theorem [9.1]

Let L € PH. We want to show that L € P*AT. By Theorem there is a probabilistic
polynomial time algorithm AM; that on input w, outputs a formula v such that the following
holds.

o If we L, then Pr[¢ € ®SAT | > 3/4.

o If w¢ L, then Pr[¢ € ®@SAT | < 1/4.

Using the alternative definition of PTM, we view Mj as a DTM with two input (w,r), where r
is a random string. Let £ be the length of the random string. Let My be the algorithm that on
input w and random string r, it outputs the formula:

TMi(w,r), L+ 2)

where 7T is the algorithm in Lemma[9.2] That is, it first runs M (w,) and then runs 7 on input
(Mi(w,r), ¢+ 2) Combining Theorem and Lemma on input w and random string r, the
algorithm My outputs a formula 1), , such that the following holds.

o If we L, then Pr, ¢ 1y¢[§w,r = —1 (mod 203) 1 > 3/4.
o If w¢ L, then Pr,c(qy¢[§thuw, = —1 (mod 20H3) 1 < 1/4.

This is equivalent to the following.

o If we L, the sum Zre{o,l}f #¢ lies in between —2¢ and —32¢ (modulo 2+3).

o If w¢ L, the sum 3°, g 13e §u,r lies in between —22% and 0 (modulo 2¢3).

The sets of values that lie in between —2¢ and —%25 and in between —%25 and 0 (modulo 2¢+3)
are the following sets P and (@, respectively:
def def

P = {28.272..290.22} and Q = {31-22....2"3 1} U {0}

Note that P and @ are disjoint.

The main idea of Theorem is that on input word w, the algorithm asks the §SAT oracle
for the value Zre{o,l}f 1w and checks whether the value is in P or). To this end, we need to
construct a formula whose number of satisfying assignments is exactly) . (0,1} 11w -

Consider the following NTM M’. On input word w, it does the following.

e Guess a string r € {0, 1}*.
e Run Ms on (w,r) to obtain a formula 1, .
e Guess a satisfying assignment for 1, ..

o ACCEPT if and only if the guessed assignment is indeed a satisfying assignment for 1), ..

Obviously, for every w, the number of accepting runs of M’ on w is precisely 3 . (0.1} 1w -
Now, to complete our proof, we present a polynomial time DTM M decides L (with oracle
access to §SAT). On input w, it does the following.

e Construct a formula ¥, such that the number of satisfying assignments of W¥,, is exactly
the number of accepting runs of M’ on w.

Here we use Cook-Levin construction (on w and the transitions in M’). Recall that Cook-
Levin reduction is parsimonious.

e Determine the value §¥,, (modulo 2/*3) by querying the #SAT oracle.

e Determine whether §W0,, lies in P or @), the answer of which implies whether w € L.

2

	Reduction from SAT to SAT
	Proof of Theorem 9.1

