Lesson 10: The probabilistic method part. I

Theme: Some examples of the probabilistic method.

1 The basic counting argument

Let K_n be a complete (undirected) graph with n vertices without self-loop.

Proposition 10.1 For every n and $k \leq n$, the following holds. If $\binom{n}{k}2^{-\binom{k}{2}+1} < 1$, then it is possible to colour the edges of K_n (with either red or blue) so that it has no monochromatic K_k subgraph.

Proof. Given a complete graph K_n, we randomly colour each edge independently with either red or blue (with equal probability). Note that there are exactly $\binom{n}{k}$ different k-cliques. Let $m = \binom{n}{k}$. We fix an ordering of all of these k-cliques: C_1, \ldots, C_m and let E_i denote the event that clique C_i is monochromatic. Then, $\Pr[E_i] = 2^{-\binom{k}{2}+1}$.

The probability that there is a monochromatic k-clique is:

$$\Pr[E_1 \cup \cdots \cup E_m] \leq \sum_{i=1}^{m} \Pr[E_i] \leq m \cdot 2^{-\binom{k}{2}+1} < 1$$

Hence, the probability that none of the cliques C_1, \ldots, C_m are monochromatic is not zero, i.e., there is a colouring of the edges of K_n so that there is no monochromatic k-clique. ■

The proof above can be converted into the following Las Vegas type of algorithm.

Algorithm 1

Input: A complete graph K_n and an integer k where $\binom{n}{k}2^{-\binom{k}{2}+1} < 1$.

Task: Output a colouring of the edges of K_n in which there is monochromatic k-clique.

1. Let ξ be a random colouring of the edges in K_n.
2. while there is a monochromatic k-clique with colouring ξ
3. Choose another random colouring ξ
4. Output ξ

In principle, Algorithm 1 may not terminate, but the expected number of steps is finite. Let $p = \Pr[E_1 \cup \cdots \cup E_m]$ and let N be the random variable for the number of iterations (of the while loop). Then, the expectation of N is $1/(1-p)$. Note that if k is fixed, $1/(1-p) = \text{poly}(n)$.

2 The expectation argument

In the following example we will use the fact that if X is a random variable, and μ is its expectation, then $\Pr[X \geq \mu] > 0$ and $\Pr[X \leq \mu] > 0$.

Let $G = (V, E)$ be an undirected graph. A cut of G is a pair $C = (A, B)$ where $A \cup B$ is partition of V. Its value is the number of edges of E that cross from A to B.

Proposition 10.2 Let G be an undirected graph with m edges. Then, it has a cut with value at least $m/2$.
Proof. Let \(G = (V, E) \) be an undirected graph with \(m \) edges. We construct a cut \(C = A \cup B \) by randomly assigning each vertex \(u \in V \) to either \(A \) or \(B \) (with equal probability).

Let \(e_1, \ldots, e_m \) be the edges in \(G \). For each \(i = 1, \ldots, m \), let \(X_i \) denote the random variable:

\[
X_i \overset{\text{def}}{=} \begin{cases}
1, & \text{if the two endpoints of } e_i \text{ are in different sets} \\
0, & \text{otherwise}
\end{cases}
\]

Let \(X = \sum_{i=1}^m X_i \), i.e., \(X \) is the random variable for the value of the cut \(C = (A, B) \). Note that \(\Pr[X_i = 1] = 1/2 \). Hence, \(\Exp[X] = m/2 \). Therefore, \(G \) has a cut with value at least \(m/2 \).

Similar to Algorithm 1 above, we can design a Las Vegas algorithm for finding a cut with value \(m/2 \), where \(m \) is the number of edges in the input graph. To bound its expected run time, let \(p = \Pr[C \text{ has value } m/2] \). Now, since \(\Exp[X] = \Exp[\text{value of } C = m/2] \), we can calculate that \(p \geq 1/\left(\frac{m}{2} + 1\right) \). Thus, the expected run time of our Las Vegas algorithm is \(\leq 1/p = \frac{m}{2} + 1 \).

Below we will show how it can be derandomized.

We need a few notations. Let \(G = (V, E) \) be an undirected graph and \(P, Q \) be two disjoint subsets of \(V \). Similar to above, to get a cut \(C = (A, B) \), we assign each vertex \(u \in V \) to either \(A \) or \(B \) as follows.

- Every vertex \(u \in P \) is assigned to \(A \).
- Every vertex \(u \in Q \) is assigned to \(B \).
- Every vertex \(u \notin P \cup Q \) is randomly assigned to either \(A \) or \(B \) (with equal probability).

Let \(N(P, Q) \) denote the random variable for the value of the cut \(C = (A, B) \) where \(P \subseteq A \) and \(Q \subseteq B \). Note that \(\Exp[N(P, Q)] \) is exactly the value of \((P, Q) \) plus half the number of edges in \(E \setminus (P \cup Q) \times (P \cup Q) \), i.e., the number of edges whose both endpoints are not in \(P \cup Q \). Consider the following deterministic algorithm.

Algorithm 2

Input: A graph \(G = (V, E) \).

Task: Output a cut \(C = (A, B) \) with value at least \(m/2 \), where \(m \) is the number of edges.

1. Let \(v_1, \ldots, v_n \) be the vertices in \(G \).
2. \(P := \emptyset \) and \(Q := \emptyset \).
3. for \(i = 1, \ldots, n \) do
4. if \(\Exp[N(P \cup \{x_i\}, Q)] > \Exp[N(P, Q \cup \{x_i\})] \) then
5. \(P := P \cup \{x_i\} \) and \(Q := Q \cup \{x_i\} \).
6. else
7. \(P := P \) and \(Q := Q \setminus \{x_i\} \).
8. Output the cut \(C = (P, Q) \).

That Algorithm 2 output a cut \(C = (P, Q) \) with value at least \(m/2 \) follows from the following observations.

- \(\Exp[N(\emptyset, \emptyset)] \geq m/2 \) (by Proposition\[10.2\]).
- Let \((P_0, Q_0), \ldots, (P_n, Q_n) \) denote the sets \((P, Q) \) after the \(i \)th iteration. Then, for every \(i = 0, \ldots, n - 1 \):
 \[
 \Exp[N(P_i, Q_i)] \leq \Exp[N(P_{i+1}, Q_{i+1})]
 \]
- \(\Exp[N(P_n, Q_n)] \) is the value of the cut \(C = (P, Q) \).

Checking whether \(\Exp[N(P \cup \{x_i\}, Q)] > \Exp[N(P, Q \cup \{x_i\})] \) can be done by comparing the number of neighbours of \(x_i \) that are in \(P \) and \(Q \).
3 Sample and modify

Proposition 10.3 Let G be a graph with n vertices and m edges where \(m = \frac{dn}{2} \), for some d. Then, G has an independent set with at least \(\frac{n}{2d} \) vertices.

Proof. Let G be a graph as stated. Consider the following algorithm.

- Delete every vertex (together with its incident edges) independently with probability \(1 - \frac{1}{d} \).
- For each remaining edge, remove it and one of its incident vertices.

Obviously, the remaining set of vertices is independent set. Let \(X \) denote the number of vertices that survive the first step and \(Y \) denote the number of edges that survive the first step. Note that each vertex survives with probability \(\frac{1}{d} \) and an edge survives with probability \(\frac{1}{d^2} \). Thus,

\[
\text{Exp}[X] = \frac{n}{d} \quad \text{and} \quad \text{Exp}[Y] = \frac{dn}{2} \cdot \frac{1}{d^2} = \frac{n}{2d}
\]

The number of vertices removed in the second step is at most \(Y \). So the number of remaining vertices after the second step is at least \(X - Y \). Since \(\text{Exp}[X - Y] = \frac{n}{2d} \), the expected number of vertices output the algorithm is at least \(\frac{n}{2d} \). Hence, there is an independent set with at least \(\frac{n}{2d} \) vertices.

Proposition 10.4 For every integer \(k \geq 3 \), there is an undirected graph with n vertices, at least \(\frac{1}{4}n^{1+(1/k)} \) and girth at least \(k \).

Proof. Let \(G_{n,p} \) be the random (undirected) graph with n vertices where between every pair of vertices the probability that there is an edge between them is \(p \). Consider the following algorithm.

- Sample \(G \in G_{n,p} \) with \(p = \frac{n^{(1/k) - 1}}{k - 1} \).
- For every cycle of length \(\leq k - 1 \), delete one of its edges.

Let \(X \) be the number of the edges in \(G \) after the first step and let \(Y \) be the number of the cycles with length \(\leq k - 1 \). There are at most \(\binom{n}{i} \frac{(i-1)!}{2} \) cycles of length \(i \). We have:

\[
\text{Exp}[X] = p \cdot \binom{n}{2} = \frac{1}{2} \left(1 - \frac{1}{n} \right) n^{1+(1/k)}
\]

\[
\text{Exp}[Y] = \sum_{i=3}^{k-1} \binom{n}{i} \frac{(i-1)!}{2} \leq \sum_{i=3}^{k-1} n^i p^i = \sum_{i=3}^{k-1} n^{i/k} < kn^{(k-1)/k}
\]

Thus, \(\text{Exp}[X - Y] \geq \frac{1}{4}n^{1+(1/k)} \).

Note that the number of edges after the second step is at least \(X - Y \). Thus, there is a graph with \(n \) vertices, at least \(\frac{1}{4}n^{1+(1/k)} \) edges and girth at least \(k \). \(\blacksquare \)

The girth of a graph is the length of its shortest cycle.
Appendix

A Pair-wise independent collection of hash functions

Definition 10.5 For $n, k \geq 1$, let $H_{n,k}$ be a collection of functions from $\{0, 1\}^n$ to $\{0, 1\}^k$. We say that $H_{n,k}$ is pair-wise independent, if for every $x, x' \in \{0, 1\}^n$ where $x \neq x'$ and for every $y, y' \in \{0, 1\}^k$, the following holds.

$$\Pr_{h \in H_{n,k}}[h(x) = y \land h(x') = y'] = 2^{-2k}$$

In the following we show that $H_{n,k}$ exists. First, we show that $H_{n,n}$ exists. For every $n \geq 1$, for every $a, b \in \mathbb{GF}(2^n)$, define a function $h_{a,b}$ from $\{0, 1\}^n$ to $\{0, 1\}^n$ as follows.

$$h_{a,b}(x) \overset{\text{def}}{=} xa + b$$

Theorem 10.6 The collection $H_{n,n} \overset{\text{def}}{=} \{h_{a,b} : a, b \in \mathbb{GF}(2^n)\}$ is pair-wise independent.

We have another candidate for pair-wise independent collection. For every $n \geq 1$, for every $A \in \{0, 1\}^{n \times n}$ and $b \in \{0, 1\}^{n \times 1}$, define a function $h_{A,b}$ from $\{0, 1\}^n$ to $\{0, 1\}^n$ as follows.

$$h_{A,b}(x) \overset{\text{def}}{=} Ax + b$$

Theorem 10.7 The collection $H_{n,n} \overset{\text{def}}{=} \{h_{A,b} : A \in \{0, 1\}^{n \times n} \text{ and } b \in \{0, 1\}^{n \times 1}\}$ is pair-wise independent.

Remark 10.8 Note that the existence of $H_{n,n}$ implies the existence of $H_{n,k}$. If $n < k$, then we can use $H_{k,k}$ and extend n bit inputs to k by padding with zeros. If $n > k$, then we can use $H_{n,n}$ and reduce n bit outputs to k by truncating the last $(n - k)$ bits.

Lemma 10.9 (Valiant and Vazirani, 1986) Let $H_{n,k}$ be a pair-wise independent hash function collection. Let $S \subseteq \{0, 1\}^n$ such that $2^{k-2} \leq |S| \leq 2^{k-1}$. Then, the following holds.

$$\Pr_{h \in H_{n,k}}[\text{there is a unique } x \in S \text{ such that } h(x) = 0^k] \geq 1/8$$

1GF(2^n) denotes a finite field with 2^n elements, where each element can be encoded as a 0-1 string of length n.

2\{0, 1\}$^{n \times n}$ denotes the set of 0-1 matrices with n rows and n columns and \{0, 1\}$^{n \times 1}$ denotes the set of 0-1 column vectors of n rows. Here the addition $+$ and multiplication \cdot are defined over \mathbb{Z}_2.