Lesson 7: Boolean circuits part. I

Theme: Some classical results on boolean circuits.

Let $n \in \mathbb{N}$, where $n \geq 1$. An n-input Boolean circuit C is a directed acyclic graph with n source vertices (i.e., vertices with no incoming edges) and 1 sink vertex (i.e., vertex with no outgoing edge).

The source vertices are labelled with x_1, \ldots, x_n. The non-source vertices, called gates, are labelled with one of \land, \lor, \neg. The vertices labelled with \land and \lor have two incoming edges, whereas the vertices labelled with \neg have one incoming edge. The size of C, denoted by $|C|$, is the number of vertices in C.

On input $w = x_1 \cdots x_n$, where each $x_i \in \{0, 1\}$, we write $C(w)$ to denote the output of C on w, where \land, \lor, \neg are interpreted in the natural way and 0 and 1 as false and true, respectively.

We refer to the in-degree and out-degree of vertices in a circuit as fan-in and fan-out, respectively. In our definition above, we require fan-in 2.

- A circuit family is a sequence $\{C_n\}_{n \in \mathbb{N}}$ such that every C_n has input n inputs and a single output.
 To avoid clutter, we write $\{C_n\}$ to denote a circuit family.
- We say that $\{C_n\}$ decides a language L, if for every $n \in \mathbb{N}$, for every $w \in \{0, 1\}^n$, $w \in L$ if and only if $C_n(w) = 1$.
- We say that $\{C_n\}$ is of size $T(n)$, where $T : \mathbb{N} \to \mathbb{N}$ is a function, if $|C_n| \leq T(n)$, for every $n \in \mathbb{N}$.

We define the following class.

$$P_{/poly} \overset{\text{def}}{=} \{L : L \text{ is decided by } \{C_n\} \text{ of size } q(n) \text{ for some polynomial } q(n)\}$$

That is, the class of languages decided by a circuit family of polynomial size.

Remark 7.1 It is not difficult to show that every unary language L is in $P_{/poly}$. Thus, $P_{/poly}$ contains some undecidable language.

Definition 7.2 A circuit family $\{C_n\}$ is P-uniform, if there is a polynomial time DTM that on input 1^n, outputs the description of the circuit C_n.

Theorem 7.3 A language L is in P if and only if it is decided by a P-uniform circuit family.

Theorem 7.4 (Karp and Lipton 1980) If $NP \subseteq P_{/poly}$, then $PH = \Sigma_2^p$.

Theorem 7.5 (Meyer 1980) If $EXP \subseteq P_{/poly}$, then $EXP = \Sigma_2^p$.

Theorem 7.6 (Shannon 1949) For every $n > 1$, there is a function $f : \{0, 1\}^n \to \{0, 1\}$ that cannot be computed by a circuit of size $2^n/(10n)$.
The classes \textbf{NC} and \textbf{AC}. For a circuit C, the \textit{depth} of C is the length of the longest directed path from an input vertex to the output vertex. For a function $T : \mathbb{N} \to \mathbb{N}$, we say that a circuit family \{${C_n}$\} has depth $T(n)$, if for every n, the depth of C_n is $\leq T(n)$.

For every i, the classes \textbf{NC}^i and \textbf{AC}^i are defined as follows.

- A language L is in \textbf{NC}^i, if there is $f(n) = \text{poly}(n)$ such that L is decided by a circuit family of size $f(n)$ and depth $O(\log^i n)$.
- The class \textbf{AC}^i is defined analogously, except that gates in the circuits are allowed to have unbounded fan-in.

The classes \textbf{NC} and \textbf{AC} are defined as follows.

$$\textbf{NC} \overset{\text{def}}{=} \bigcup_{i \geq 0} \textbf{NC}^i \quad \text{and} \quad \textbf{AC} \overset{\text{def}}{=} \bigcup_{i \geq 0} \textbf{AC}^i$$

Note that $\textbf{NC}^i \subseteq \textbf{AC}^i \subseteq \textbf{NC}^{i+1}$.

Here we take the length of a path as the number of edges in it.