Lesson 2: The class NL

Theme: Some classical results on the class NL.

We recall the notion of log-space reduction. Let \(F : \Sigma^* \to \Sigma^* \) be a function. We say that \(F \) is computable in logarithmic space, if there is a 3-tape DTM \(M \) such that on input word \(w \), it works as follows.

- Tape 1 contains the input word \(w \) and its content never changes.
- There is a constant \(c \) such that \(M \) uses only \(c \log |w| \) space in tape 2.
- The head in tape 3 can only “write” and move right, i.e., once it writes a symbol to a cell, the content of that cell will not change.

Tape 1 is called the *input tape*, tape 2 the *work tape* and tape 3 the *output tape*.

Definition 2.1 A language \(L \) is log-space reducible to another language \(K \), denoted by \(L \leq_{\log} K \), if there is a function \(F : \Sigma^* \to \Sigma^* \) computable in logarithmic space such that for every \(w \in \Sigma^* \), \(w \in L \) if and only if \(F(w) \in K \).

Remark 2.2 The relation \(\leq_{\log} \) is transitive in the sense that if \(L_1 \leq_{\log} L_2 \) and \(L_2 \leq_{\log} L_3 \), then \(L_1 \leq_{\log} L_3 \).

Definition 2.3 Let \(K \) be a language.

- \(K \) is **NL-hard**, if for every language \(L \in \text{NL} \), \(L \leq_{\log} K \).
- \(K \) is **NL-complete**, if \(K \in \text{NL} \) and \(K \) is NL-hard.

Define the following language \(\text{PATH} \).

\[
\text{PATH} \overset{\text{def}}{=} \{(G, s, t) : G \text{ is directed graph and there is a path in } G \text{ from vertex } s \text{ to vertex } t\}
\]

Theorem 2.4 \(\text{PATH} \) is NL-complete.

Theorem 2.5 (Savitch 1970) \(\text{NL} \subseteq \text{DSPACE}[\log^2 n] \).

To prove Theorem 2.5 it suffices to show that \(\text{PATH} \in \text{DSPACE}[\log^2 n] \). See Appendix A.

Theorem 2.6 (Immerman 1988 and Szelepcsényi 1987) \(\text{NL} = \text{coNL} \).

To prove Theorem 2.6, we consider the complement language of \(\text{PATH} \):

\[
\text{PATH} \overset{\text{def}}{=} \{(G, s, t) : G \text{ is directed graph and there is no path in } G \text{ from vertex } s \text{ to vertex } t\}
\]

Note that \(\text{PATH} \) is coNL-complete. To prove Theorem 2.6 it suffices to show that \(\text{PATH} \in \text{NL} \). See Appendix B.
Appendix

A Proof of Theorem 2.5

Algorithm 1 below decides the language PATH.

Algorithm 1
Input: (G, s, t), where G is a directed graph and s and t are two vertices in G.
Task: ACCEPT iff there is a path in G from s to t.
1: Let n be the number of vertices in G.
2: ACCEPT iff $\text{CHECK}_G(s, t, \lceil \log n \rceil) = \text{true}$.

It uses Procedure CHECK$_G$ defined below.

Procedure CHECK$_G$
Input: (u, v, k) where u and v are two vertices in G, and k is an integer ≥ 0.
Task: Return true, if there is a path in G of length $\leq 2^k$ from u to v. Otherwise, return false.
1: if $k = 0$ then
2: return true iff $(u = v$ or (u, v) is an edge in G).
3: for all vertex x in G do
4: $b := \text{CHECK}_G(u, x, k - 1)$.
5: if $b = \text{true}$ then
6: $b := \text{CHECK}_G(x, v, k - 1)$.
7: if $b = \text{true}$ then
8: return true.
9: return false.

Note that when computing CHECK$_G(u, x, k - 1)$ and CHECK$_G(x, v, k - 1)$, Procedure CHECK$_G$ can use the same space. Thus, it uses only $O(k \log n)$ space. Since k is initialized with $\lceil \log n \rceil$, Algorithm 1 uses $O(\log^2 n)$ space in total.

B Proof of Theorem 2.6

Consider the following algorithm.

Algorithm No-path
Input: (G, s, t) where G is directed graph and s and t are two vertices in G.
Task: ACCEPT iff there is no path in G from s to t.
1: $m :=$ the number of vertices in G reachable from s.
2: {Note: This value m is computed with Procedure COUNT-VERTEX$_G$ below.}
3: for all vertex x in G do
4: Guess if x is reachable from s.
5: if the guess is “yes” then
6: $m := m - 1$.
7: Guess a path from s to x.
8: if it is not possible to guess such a path then REJECT.
9: if there is such a path and $x = t$ then REJECT.
10: ACCEPT iff $m = 0$.
The number of vertices reachable from s can be computed with Procedure COUNT-VERTEX_G defined below.

Procedure COUNT-VERTEX_G

Input: u where u is a vertex in G.

Task: Return the number of vertices in G reachable from vertex u, where the number is written in binary form.

1. Let n be the number of vertices in G.
2. $m := 1 + \text{the outdegree of } u$.
3. $\{\text{Note: } m \text{ is initialized with the number of vertices reachable from } u \text{ in } \leq 1 \text{ steps.}\}$
4. for $i = 2, \ldots, n$ do
5. $m' := 0$.
6. for all vertex x in G do
7. Guess if there is a path from u to x with length $\leq i$.
8. if the guess is “yes” then
9. Verify it by guessing such a path (of length $\leq i$).
10. $m' := m' + 1$.
11. if the guess is “no” then
12. Verify that indeed there is no such a path (of length $\leq i$).
13. $m := m'$.
14. $\{\text{Note: On each iteration, } m \text{ is the number of vertices reachable from } u \text{ in } \leq i \text{ steps.}\}$
15. return m

The verification in Line 12 above is done with the following procedure.

Procedure VERIFY_G

Input: (u, x, m, i) where u and x are vertices in G, $i \geq 2$ is an integer and m is the number of vertices in G reachable from u in $\leq i - 1$ steps.

Task: Verify that x is not reachable from u in $\leq i$ steps.

1. $\ell := m$.
2. for all vertex y in G do
3. Guess if there is a path from u to y with length $\leq i - 1$.
4. if the guess is “yes” then
5. $\ell := \ell - 1$.
6. Guess a path (of length $\leq i - 1$) from u to y.
7. Verify that the edge (y, x) does not exist in G.
8. Verification is complete iff $\ell = 0$.

Note that if any of the verification in Lines 9 and 12 in Procedure COUNT-VERTEX_G and Line 7 in Procedure VERIFY_G fails, the whole algorithm rejects immediately.

The correctness of Procedure COUNT-VERTEX_G can be established by induction on i. The correctness of Algorithm NO-PATH follows immediately from COUNT-VERTEX_G.