Lesson 10: Non-deterministic Turing machines

Theme: Non-deterministic Turing machines.

A non-deterministic Turing machine (NTM) \(M = \langle \Sigma, \Gamma, Q, q_0, q_{\text{acc}}, q_{\text{rej}}, \delta \rangle \) is defined as the standard Turing machine, with the exception that \(\delta \) is now a relation:

\[
\delta \subseteq (Q - \{ q_{\text{acc}}, q_{\text{rej}} \}) \times \Gamma \times Q \times \Gamma \times \{ \text{Left, Right, Stay} \}
\]

As before, we write an element of \(\delta \) is in the form:

\[
(q, a) \rightarrow (p, b, \alpha).
\]

The initial configuration of \(M \) on input word \(w \) is \(q_0w \). For two configurations \(C, C' \), the notion of “one step computation” \(C \vdash C' \) is defined similarly as in the standard Turing machine. A run of \(M \) on input \(w \) is a sequence:

\[
C_0 \vdash C_1 \vdash \cdots
\]

where \(C_0 \) is the initial configuration on \(w \). A run is accepting/rejecting, if it ends up in an accepting/rejecting configuration, respectively. However, due to non-determinism, for each \(C \) there can be a few configurations \(C' \) such that \(C \vdash C' \), thus, there can be many runs. Some are accepting, some are rejecting, and some other do not halt.

Important definitions:

- An NTM \(M \) accepts \(w \), if there is an accepting run of \(M \) on \(w \).
- An NTM \(M \) rejects \(w \), if all runs of \(M \) on \(w \) are rejecting.
- A language \(L \) is decided by an NTM \(M \), if
 - for every \(w \in L \), \(M \) accepts \(w \);
 - for every \(w \notin L \), \(M \) rejects \(w \).
- A language \(L \) is recognized by an NTM \(M \), if
 - for every \(w \in L \), \(M \) accepts \(w \);
 - for every \(w \notin L \), \(M \) does not accept \(w \).

Recall that the standard TM is always deterministic. To avoid potential confusion, we will use the abbreviation DTM to mean deterministic Turing machine.

Theorem 10.1 For every language \(L \), the following holds.

- If \(L \) is recognized by an NTM \(M \), then there is a DTM \(M' \) that recognizes \(L \).
- If \(L \) is decided by an NTM \(M \), then there is a DTM \(M' \) that decides \(L \).
Appendix

A An informal definition of non-deterministic algorithm

One can view a “non-deterministic” algorithm as an algorithm as defined in the appendix in Lesson 7, with an additional special variable z and an instruction of the following form:

$$z := 0 \parallel 1;$$

(1)

This instruction means “randomly assign variable z with either 0 or 1.”

A non-deterministic algorithm A “accepts” an input word w, if on every instruction of the form $[z]$, variable z can be assigned with 0 or 1 such that A will “return true.” Note that the instruction $[z]$ can be encountered more than once during the execution of algorithm A. For example, it may appear inside a while-loop.