Lesson 9: Reducibility

Theme: Reductions as a tool to prove undecidability.

1 Reductions

Consider a function $F : \Sigma^* \to \Sigma^*$. A TM M that computes F is a 2-tape TM that accepts every word $w \in \Sigma^*$ and when it halts, the content of its second tape is $F(w)$. There is no restriction on the content of the first tape. That is, on every word w, M accepts w with the accepting run:

$$(q_0, \cdot w, \cdot) \vdash \cdots \vdash (q_{\text{acc}}, u, \cdot F(w))$$

for some string u (which denotes the content of the first tape). A function is computable, if there is a TM that computes it.

Definition 9.1 A language L_1 is mapping reducible to another language L_2, denoted by $L_1 \leq_m L_2$, if there is a computable function F such that for every $w \in \Sigma^*$:

$$w \in L_1 \text{ if and only if } F(w) \in L_2$$

The function F is called mapping reduction.

Sometimes we omit the word “mapping” and call it simply “reducible” or “reduction,” instead of “mapping reducible” or “mapping reduction.” Intuitively $L_1 \leq_m L_2$ means that L_2 is “computationally more general,” or “more general” than L_1 and that a TM for deciding L_2 can be used to decide L_1.

Definition 9.2 A language L_1 is Turing reducible to another language L_2, denoted by $L_1 \leq_T L_2$, if by assuming that L_2 is decidable by a TM M_2, there is a TM M_1 that decides L_1 using M_2 as a “subroutine.”

Moreover, we also assume that M_2 decides L_2 in one step. We call M_1 a TM with oracle access to L_2.

Obviously, if $L_1 \leq_m L_2$, then $L_1 \leq_T L_2$. Also, if $L_1 \leq_T L_2$ and L_1 is undecidable, so is L_2.

2 Some variants of Halting problem

The following languages are all undecidable.

- $L_0 := \{[M] \mid L(M) = \emptyset\}$.
 That is, $[M] \in L_0$ if and only if M does not accept any word.
- $L_1 := \{[M] \mid L(M) = \{0, 1\}^*\}$.
 That is, $[M] \in L_1$ if and only if M accepts every word.
- $L_2 := \{[M] \mid M \text{ accepts the empty word } \epsilon\}$
 That is, $[M] \in L_2$ if and only if M accepts the empty word ϵ.
- $L_3 := \{[M] \mid M \text{ accepts the word } 1101\}$.
- $L_4 := \{[M] \mid L(M) = \{a^n b^n \mid n \geq 0\}\}$.
- $L_5 := \{[M] \mid L(M) \text{ is a regular language}\}$.
Proof that L_0 is undecidable (via mapping reduction). We are going to show that $\text{HALT} \leq_m \overline{L_0}$, where $\overline{L_0}$ is the complement of L_0. The reduction is as follows.

INPUT: $[\mathcal{M}]w$.

- Construct a TM $\mathcal{K}_{\mathcal{M},w}$ that works as follows.

 INPUT: $u \in \Sigma^*$.

 - Run \mathcal{M} on w.
 - If \mathcal{M} accepts w, ACCEPT.
 - If \mathcal{M} rejects w, REJECT.

 (Note: ACCEPT and REJECT above are inside $\mathcal{K}_{\mathcal{M},w}$, thus, they are supposed to mean $\mathcal{K}_{\mathcal{M},w}$ accepts and rejects its input string u, respectively.)

- Output $[\mathcal{K}_{\mathcal{M},w}]$.

The language accepted by $\mathcal{K}_{\mathcal{M},w}$ is as follows.

$$L(\mathcal{K}_{\mathcal{M},w}) := \begin{cases} \Sigma^*, & \text{if } \mathcal{M} \text{ accepts } w \\ \emptyset, & \text{if } \mathcal{M} \text{ does not accept } w \end{cases}$$

Thus, \mathcal{M} accepts w if and only if $L(\mathcal{K}_{\mathcal{M},w}) \neq \emptyset$. By definition of L_0 and HALT, $[\mathcal{M}]w \in \text{HALT}$ if and only if $[\mathcal{K}_{\mathcal{M},w}] \notin L_0$. Since HALT is undecidable, $\overline{L_0}$ is undecidable, and therefore, L_0 is undecidable.

Proof that L_0 is undecidable (via Turing reduction). Suppose to the contrary that L_0 is decidable. Let \mathcal{M}_0 is a TM that decides L_0. Then, the following algorithm, denoted by A, decides the language HALT.

INPUT: $[\mathcal{M}]w$.

- Construct a TM $\mathcal{K}_{\mathcal{M},w}$ that works as follows.

 INPUT: $u \in \Sigma^*$.

 - Run \mathcal{M} on w.
 - If \mathcal{M} accepts w, ACCEPT. (Note: ACCEPT here is for $\mathcal{K}_{\mathcal{M},w}$ to accept u.)
 - If \mathcal{M} rejects w, REJECT. (Note: REJECT here is for $\mathcal{K}_{\mathcal{M},w}$ to reject u.)

- Run \mathcal{M}_0 on $[\mathcal{K}_{\mathcal{M},w}]$.

 - If \mathcal{M}_0 accepts $[\mathcal{K}_{\mathcal{M},w}]$, REJECT. (Note: REJECT here is for A to reject $[\mathcal{M}]w$.)
 - If \mathcal{M}_0 rejects $[\mathcal{K}_{\mathcal{M},w}]$, ACCEPT. (Note: ACCEPT here is for A to accept $[\mathcal{M}]w$.)

Note that the language $L(\mathcal{K}_{\mathcal{M},w})$ is the same as above. That is,

$$L(\mathcal{K}_{\mathcal{M},w}) := \begin{cases} \Sigma^*, & \text{if } \mathcal{M} \text{ accepts } w \\ \emptyset, & \text{if } \mathcal{M} \text{ does not accept } w \end{cases}$$

Thus, $[\mathcal{M}]w \in \text{HALT}$ if and only if $[\mathcal{K}_{\mathcal{M},w}] \notin L_0$. Since \mathcal{M}_0 is supposed to decide L_0, our algorithm A above decides HALT, which contradicts the fact that HALT is undecidable. Therefore, there is no such Turing machine \mathcal{M}_0 that decides L_0, which means L_0 is undecidable.
Proof that L_4 is undecidable (via mapping reduction). We are going to show that $\text{HALT} \leq_m L_4$. The reduction is as follows.

INPUT: $[M]w$.

- Construct a TM $K_{M,w}$ that works as follows.

 INPUT: $u \in \Sigma^*$.
 - Run M on w.
 - If M accepts w, check if u is of the form $a^n b^n$, for some $n \geq 1$.
 * If u is of the form $a^n b^n$, ACCEPT.
 * If u is not of the form $a^n b^n$, REJECT.
 - If M rejects w, REJECT.

(Note: ACCEPT and REJECT above are inside $K_{M,w}$, thus, they are supposed to mean $K_{M,w}$ accepts and rejects its input string u, respectively.)

- Output $[K_{M,w}]$.

The language accepted by $K_{M,w}$ is as follows.

$$L(K_{M,w}) := \begin{cases} \{a^n b^n | n \geq 1\}, & \text{if } M \text{ accepts } w \\ \emptyset, & \text{if } M \text{ does not accept } w \end{cases}$$

Thus, M accepts w if and only if $L(K_{M,w}) = \{a^n b^n | n \geq 1\}$. By definition of HALT and L_4, $Mw \in \text{HALT}$ if and only if $[K_{M,w}] \in L_4$. Since HALT is undecidable, L_4 is undecidable too.

Proof that L_4 is undecidable (via Turing reduction). Suppose to the contrary that L_4 is decidable. Let M_4 be a TM that decides L_4. Then, the following algorithm, denoted by A, decides the language HALT.

INPUT: $[M]w$.

- Construct a TM $K_{M,w}$ that works as follows.

 INPUT: $u \in \Sigma^*$.
 - Run M on w.
 - If M accepts w, check if u is of the form $a^n b^n$, for some $n \geq 1$.
 * If u is of the form $a^n b^n$, ACCEPT. (Here ACCEPT is for $K_{M,w}$ to accept u.)
 * If u is not of the form $a^n b^n$, REJECT. (Here REJECT is for $K_{M,w}$ to reject u.)
 - If M rejects w, REJECT. (Here REJECT is for $K_{M,w}$ to reject u.)

- Run M_4 on $[K_{M,w}]$.
- If M_4 accepts $[K_{M,w}]$, ACCEPT. (Here ACCEPT is for A to accept $[M]w$.)
- If M_4 rejects $[K_{M,w}]$, REJECT. (Here REJECT is for A to reject $[M]w$.)

The reasoning is the same as above. M accepts w if and only if $L(K_{M,w}) = \{a^n b^n | n \geq 1\}$. Thus, $[M]w \in \text{HALT}$ if and only if $[K_{M,w}] \in L_4$. Since M_4 is supposed to decide L_4, our algorithm A above decides HALT, which contradicts the fact that HALT is undecidable. Therefore, there is no such Turing machine M_4 that decides L_4, which means L_4 is undecidable.
3 Some undecidable problems concerning CFL

We consider the following three problems defined below.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Input</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFL-Intersection</td>
<td>Two CFG’s $G_1 = \langle \Sigma, V_1, R, S \rangle$ and $G_2 = \langle \Sigma, V_2, R_2, S_2 \rangle$.</td>
<td>Output True, if $L(G_1) \cap L(G_2) \neq \emptyset$. Otherwise, output False.</td>
</tr>
<tr>
<td>CFL-Universality</td>
<td>A CFG $\mathcal{G} = \langle \Sigma, V, R, S \rangle$.</td>
<td>Output True, if $L(\mathcal{G}) = \Sigma^*$. Otherwise, output False.</td>
</tr>
<tr>
<td>CFL-Subset</td>
<td>Two CFG’s G_1 and G_2.</td>
<td>Output True, if $L(G_1) \subseteq L(G_2)$. Otherwise, output False.</td>
</tr>
</tbody>
</table>

Theorem 9.3 All the problems above, CFL-Intersection, CFL-Universality and CFL-Subset, are undecidable.