Lesson 9: Reducibility

Theme: Reductions as a tool to prove undecidability.

1 Reductions

Consider a function $F : \Sigma^* \rightarrow \Sigma^*$. A TM M that computes F is a TM that accepts every word $w \in \Sigma^*$ and when it halts, the content of its tape is $F(w)$. That is, on every word w, M accepts w with the accepting run:

$q_0 \ w \ P \ \cdots \ \P \ q_{\text{acc}} \ F(w)$

A function is computable, if there is a TM that computes it.

Definition 9.1 A language L_1 is mapping reducible to another language L_2, denoted by $L_1 \leq_m L_2$, if there is a computable function F such that for every $w \in \Sigma^*$:

$$w \in L_1 \text{ if and only if } F(w) \in L_2$$

The function f is called mapping reduction.

Sometimes we omit the word “mapping” and call it simply “reducible” or “reduction,” instead of “mapping reducible” or “mapping reduction.” Intuitively $L_1 \leq_m L_2$ means that L_2 is “computationally more general,” or “more general” than L_1 and that a TM for deciding L_2 can be used to decide L_1.

Definition 9.2 A language L_1 is Turing reducible to another language L_2, denoted by $L_1 \leq_T L_2$, if by assuming that L_2 is decidable by a TM M_2, there is a TM M_1 that decides L_1 using M_2 as a “subroutine.”

Moreover, we also assume that M_2 decides L_2 in one step. We call M_1 a TM with oracle access to L_2.

Obviously, if $L_1 \leq_m L_2$, then $L_1 \leq_T L_2$. Also, if $L_1 \leq_T L_2$ and L_1 is undecidable, so is L_2.

2 Some variants of Halting problem

The following languages are all undecidable.

- $L_0 := \{ [\mathcal{M}] \mid \mathcal{L}(\mathcal{M}) = \emptyset \}$.
 That is, $[\mathcal{M}] \in L_0$ if and only if \mathcal{M} does not accept any word.
- $L_1 := \{ [\mathcal{M}] \mid \mathcal{L}(\mathcal{M}) = \{0,1\}^* \}$.
 That is, $[\mathcal{M}] \in L_1$ if and only if \mathcal{M} accepts every word.
- $L_2 := \{ \mathcal{M} \mid \mathcal{M}$ accepts the empty word $\epsilon \}$
 That is, $[\mathcal{M}] \in L_2$ if and only if \mathcal{M} accepts the empty word ϵ.
- $L_3 := \{ [\mathcal{M}] \mid \mathcal{M}$ accepts the word $1101 \}$.
- $L_4 := \{ [\mathcal{M}] \mid L(\mathcal{M}) = \{a^n b^n \mid n \geq 0 \} \}$.
- $L_5 := \{ [\mathcal{M}] \mid L(\mathcal{M}) \text{ is a regular language} \}$.
3 Some undecidable problems concerning CFL

We consider the following three problems defined below.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Input</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFL-Intersection</td>
<td>Two CFG’s $G_1 = (\Sigma, V_1, R, S)$ and $G_2 = (\Sigma, V_2, R_2, S_2)$.</td>
<td>Output True, if $L(G_1) \cap L(G_2) \neq \emptyset$. Otherwise, output False.</td>
</tr>
<tr>
<td>CFL-Universality</td>
<td>A CFG $G = (\Sigma, V, R, S)$.</td>
<td>Output True, if $L(G) = \Sigma^*$. Otherwise, output False.</td>
</tr>
<tr>
<td>CFL-Subset</td>
<td>Two CFG’s G_1 and G_2.</td>
<td>Output True, if $L(G_1) \subseteq L(G_2)$. Otherwise, output False.</td>
</tr>
</tbody>
</table>

Theorem 9.3 All the problems above, CFL-Intersection, CFL-Universality and CFL-Subset, are undecidable.