Lesson 8: Universal Turing machine and Halting problem

Theme: Universal Turing machine and Halting problem

The string representation of a Turing machine. Recall that a Turing machine is defined as a system $\mathcal{M} = \langle \Sigma, \Gamma, Q, q_0, q_{\text{acc}}, q_{\text{rej}}, \delta \rangle$, where we can assume that $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, \sqcup\}$. Without loss of generality, we can also assume that $Q = \{0, 1, \ldots, n\}$ for some positive integer n with 0 being the initial state.

We note the following.

- Each state $i \in Q$ is written as a string in its binary form.
- Each transition $(i, a) \rightarrow (j, b, \alpha) \in \delta$ can be written as a string over the symbols 0, 1, \sqcup, \leftarrow, \rightarrow, \leftarrow, \uparrow, \downarrow, \hbar, $\left|$, $\right|$, $\#$, \rangle, \langle, \sqcup, $\left|$, $\right|$, $\#$, \rangle, δ.

So, the whole system $\mathcal{M} = \langle \Sigma, \Gamma, Q, 0, q_{\text{acc}}, q_{\text{rej}}, \delta \rangle$ can be written as a string:

$$\lfloor \Sigma \rfloor \# \lfloor \Gamma \rfloor \# \lfloor Q \rfloor \# \lfloor 0 \rfloor \# \lfloor q_{\text{acc}} \rfloor \# \lfloor q_{\text{rej}} \rfloor \# \lfloor \delta \rfloor$$

where $\lfloor \cdot \rfloor$ denotes the string representing the component \cdot and $\#$ the symbol separating two consecutive components.

This shows that every Turing machine (whose tape alphabet is $\Gamma = \{0, 1, \sqcup\}$) can be described as a string over a fixed set of the symbols, i.e., 0, 1, $\left|$, $\right|$, \uparrow, \downarrow, \hbar, $\left|$, $\right|$, $\#$. All these symbols can be further encoded into strings over 0 and 1 to obtain a binary string, which we denote by $\lfloor \mathcal{M} \rfloor$. That is, $\lfloor \mathcal{M} \rfloor$ is the binary string representing the Turing machine \mathcal{M}. Sometimes, we will also say $\lfloor \mathcal{M} \rfloor$ is the string description of \mathcal{M}, or the description of \mathcal{M}, for short.

Universal Turing machine (UTM). A universal Turing machine (UTM) is a Turing machine U that gets as input a description of a Turing machine $\lfloor \mathcal{M} \rfloor$ and a word w. On such input, it simulates \mathcal{M} on w. (Some textbooks use the phrase “it runs \mathcal{M} on w” for “it simulates \mathcal{M} on w.”)

Halting problem. We define the following languages:

- $\text{HALT} := \{ \lfloor \mathcal{M} \rfloor \$w \mid \mathcal{M} \text{ accepts } w \text{ where } w \in \{0, 1\}^* \}.$
- $\text{HALT}_0 := \{ \lfloor \mathcal{M} \rfloor \mid \mathcal{M} \text{ accepts } \lfloor \mathcal{M} \rfloor \}.$
- $\text{HALT}_0' := \{ \lfloor \mathcal{M} \rfloor \mid \mathcal{M} \text{ does not accept } \lfloor \mathcal{M} \rfloor \}.$

Theorem 8.1 HALT_0' is undecidable.

Corollary 8.2 HALT_0 and HALT are undecidable.

Proposition 8.3 The language HALT_0 and HALT are recognizable (recursively enumerable).

Recall that if both L and its complement $\overline{L} = \Sigma^* - L$ are recognizable, then both are decidable. Then, the following corollary follows immediately from above.

Corollary 8.4 The language HALT is not recognizable (recursively enumerable).

*Obviously, since we consider only Turing machines with $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, \sqcup\}$, it is not necessary to include them in $\lfloor \mathcal{M} \rfloor$. But for the sake of consistency in our notation, we simply include them.