Lesson 1: Finite state automata

Theme: Deterministic and non-deterministic finite state automata.

1 Deterministic finite state automata

A deterministic finite state automaton (DFA) is a system \(A = \langle \Sigma, Q, q_0, F, \delta \rangle \), where each component is as follows.

- \(Q \) is a finite set of states.
- \(q_0 \in Q \) is the initial state.
- \(F \subseteq Q \) is the set of accepting states.
- \(\delta : Q \times \Sigma \to Q \) is the transition function.

In this case, we will say that “\(A \) is a DFA over alphabet \(\Sigma \),” or that “the alphabet of \(A \) is \(\Sigma \).”

Remark 1.1 A DFA \(A = \langle \Sigma, Q, q_0, F, \delta \rangle \) can be visualised as a directed graph as follows.

- The vertices are elements of \(Q \).
- There is an edge from \(p \) to \(p' \) labeled with \(a \), if \(\delta(p, a) = p' \).

On input word \(w = a_1 \cdots a_n \), the run of \(A \) on \(w \) is the sequence:

\[
p_0 a_1 p_1 a_2 p_2 \cdots a_n p_n,
\]

where \(p_0 = q_0 \) and \(\delta(p_i, a_{i+1}) = p_{i+1} \), for each \(i = 0, \ldots, n - 1 \).

Sometimes we are interested in a run that does not start from the initial state. In that case, we can define the run of \(A \) on \(w \) starting from state \(q \) as the sequence defined as above, but with condition \(p_0 = q \). That is,

\[
p_0 a_1 p_1 a_2 p_2 \cdots a_n p_n,
\]

where \(p_0 = q \) and \(\delta(p_i, a_{i+1}) = p_{i+1} \), for each \(i = 0, \ldots, n - 1 \).

A run is called an accepting run, if \(p_0 = q_0 \) and \(q_n \in F \). We say that \(A \) accepts \(w \), if there is an accepting run of \(A \) on \(w \). The language of all words accepted by \(A \) is denoted by \(L(A) \).

A language \(L \) is called a regular language, if there is a DFA \(A \) such that \(L(A) = L \).

Remark 1.2 Let \(A = \langle \Sigma, Q, q_0, F, \delta \rangle \) be a DFA.

- The empty string \(\varepsilon \) is accepted by \(A \) if and only if \(q_0 \in F \).
- For every word \(w \), there is exactly one run of \(A \) on \(w \).

Theorem 1.3 Regular languages are closed under boolean operations, i.e., intersection, union, and complementation. More formally, it can be stated as follows.

- For every DFA \(A \) over alphabet \(\Sigma \), there is a DFA \(A' \) over the same alphabet \(\Sigma \) such that \(L(A') = \Sigma^* - L(A) \).
- For every two DFA \(A_1 \) and \(A_2 \), there is a DFA \(A' \) such that \(L(A') = L(A_1) \cap L(A_2) \).
- For every two DFA \(A_1 \) and \(A_2 \), there is a DFA \(A' \) such that \(L(A') = L(A_1) \cup L(A_2) \).
2 Non-deterministic finite state automata

A non-deterministic finite state automaton (NFA) is a system \(A = (\Sigma, Q, q_0, F, \delta) \), where each component is as follows.

- \(\Sigma \) is the alphabet.
- \(Q \) is a finite set of states.
- \(q_0 \in Q \) is the initial state.
- \(F \subseteq Q \) is the set of accepting states.
- \(\delta \subseteq Q \times \Sigma \times Q \) is the transition relation.

As before, we will say that \(A \) is an NFA over alphabet \(\Sigma \), or that \(\text{the alphabet of } A \text{ is } \Sigma \).

On input word \(w = a_1 \cdots a_n \), a run of \(A \) on \(w \) is a sequence:

\[q_0 a_1 q_1 a_2 q_2 \cdots a_n q_n, \]

where \((q_i, a_{i+1}, q_{i+1}) \in \delta\), for each \(i = 0, \ldots, n - 1 \) \(^{\text{It is called accepting run, if } q_n \in F.} \) We say that \(A \) accepts \(w \), if there is an accepting run of \(A \) on \(w \). The language of all words accepted by \(A \) is denoted by \(L(A) \). A language \(L \) is an NFA language, if there is an NFA \(A \) such that \(L = L(A) \), in which, we say that the language \(L \) is accepted by \(A \), or \(A \) accepts the language \(L \).

Remark 1.4 NFA languages are closed under intersection and union. More formally, it can be stated as follows.

- For every two NFA \(A_1 \) and \(A_2 \), there is an NFA \(A' \) such that \(L(A') = L(A_1) \cap L(A_2) \).
- For every two NFA \(A_1 \) and \(A_2 \), there is an NFA \(A' \) such that \(L(A') = L(A_1) \cup L(A_2) \).

Question: Why can we not conclude that NFA languages are closed under complementation directly from the definition of NFA? \(\blacksquare \)

Theorem 1.5 For every NFA \(A \), there is a DFA \(A' \) such that \(L(A) = L(A') \).

In view of Theorem 1.5, we can say that a language is regular if and only if it is accepted by an NFA.

Corollary 1.6 NFA languages are closed under complement. That is, for every NFA \(A \) over alphabet \(\Sigma \), there is a DFA \(A' \) over the same alphabet \(\Sigma \) such that \(L(A') = \Sigma^* - L(A) \).

Theorem 1.7 Regular languages are closed under concatenation and Kleene star. More formally, it can be stated as follows.

- If \(L_1 \) and \(L_2 \) are regular languages, so is \(L_1L_2 \).
- If \(L \) is a regular language, so is \(L^* \).

\(^*\text{As in the case of DFA, we can define a run of } A \text{ on } w \text{ starting from state } q \text{ as above, but starts from state } q.\)
Appendix: Concatenation and Kleene star

For two words u and v, $u \cdot v$ denotes the word obtained by concatenating v at the end of u. ($u \cdot v$ reads: u concatenates with v.) By default, $u \cdot \epsilon = \epsilon \cdot u = u$. We will usually omit \cdot and simply write uv instead of $u \cdot v$.

In the following, let L_1, L_2 and L be languages. We define the following operators.

\[
\begin{align*}
L_1 \cdot L_2 & := \{ uv \mid u \in L_1 \text{ and } v \in L_2 \} \quad \text{(Concatenation)} \\
L^n & := \{ u_1 \cdots u_n \mid \text{each } u_i \in L \} \\
L^* & := \bigcup_{n \geq 0} L^n \quad \text{(Kleene star)}
\end{align*}
\]

As before, we usually write L_1L_2 to denote $L_1 \cdot L_2$, and L_1L_2 reads as L_1 concatenates with L_2.

Note that by default, for any set $X \subseteq \Sigma^*$, $X^0 = \{ \epsilon \}$. Thus, $\emptyset^* = \{ \epsilon \}$.