Extra exercises for review week on 26 October 2020

Question 1. Give the DFA/NFA/regex for each of the following languages. Here the alphabet is \(\Sigma = \{a, b\} \).

(a) \(L_1 := \{w \mid w \text{ starts with } b \text{ and ends with } a\} \).
(b) \(L_2 := \{w \mid w \text{ contains } aba\} \).
 For example: \(aba \) and \(bbabab \) are in \(L_2 \), since they contain \(aba \). On the other hand, \(bbaabb \) and \(babbabba \) are not in \(L_2 \), since they do not contain \(aba \).
(c) \(L_3 := \Sigma^* - L_2 \).
(d) \(L_4 := \{w \mid \text{if } w \text{ contains } ab \text{ then } w \text{ ends with } bb\} \).

Question 2. Construct the CFG for each of the following languages.

(a) \(L_5 := \{ a^n b^n \mid n \geq 1 \} \).
(b) \(L_6 := \{ a^n x b^n \mid x \in \Sigma^* \text{ and } n \geq 1 \} \).
(c) \(L_7 := \{ a^n b^m a^m b^m \mid n, m \geq 1 \} \).
(d) \(L_8 := \{w \mid w \in \{a, b\}^* \text{ is a palindrome}\} \).
(e) \(L_9 \) consists of the words \(w \in \{a, b\}^* \) where the number of \(a \)'s is the same as the number of \(b \)'s.
(f) \(L_{10} \) consists of the words \(w \in \{a, b\}^* \) where the number of \(a \)'s is the twice as many as the number of \(b \)'s.

Question 3. Prove that each of the following languages is not regular.

(a) \(L_{11} = \{a^n b^m a^n \mid m, n \geq 0 \} \).
(b) \(L_{12} = \{a^n b^m a^m b^n \mid n, m \geq 1 \} \).
(c) \(L_{13} = \{w \mid w \in \{a, b\}^* \text{ is not a palindrome}\} \).
(d) \(L_{14} = \{wxw \mid w, x \in \{a, b\}^* \} \).

Are they CFL?

Question 4. Consider the language \(L := \{a^i b^j c^k \mid i, j, k \geq 0 \text{ and if } i = 1, \text{ then } j = k\} \).

(a) Prove that \(L \) is not regular.
(b) Show that \(L \) acts like a regular language in the pumping lemma. In other words, there is an integer \(N \) such that \(L \) satisfies the conditions of the pumping lemma.
(c) Explain why (a) and (b) above do not contradict pumping lemma.

Question 5. For a language \(L \) and integer \(k \geq 1 \), define the following operators.

\[
\text{HALF}(L) := \{u \mid \text{there is } v \text{ such that } |u| = |v| \text{ and } uv \in L\}.
\]

\[
\text{k-ROOT}(L) := \{u \mid u \text{ is a prefix of word } v \in L \text{ such that } |u|^k = |v|\}.
\]

Prove the following.

(a) If \(L \) is regular, then \(\text{HALF}(L) \) is regular.
(b) If \(L \) is regular, then for every integer \(k \geq 1 \), \(\text{k-ROOT}(L) \) is regular.