Lesson 1: Preliminaries

Theme: Review of some essential mathematical backgrounds.

1 Useful notations and facts from discrete mathematics

Equivalence relations:
A binary relation R over X is called an equivalence relation, if it satisfies the following conditions.

- Reflexive: $(x, x) \in R$, for every $x \in X$.
- Symmetric: $(x, y) \in R$ if and only if $(y, x) \in R$, for every $x, y \in X$.
- Transitive: for every $x, y, z \in X$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

We will usually write \sim to denote an equivalence relation, and to avoid clutter, we will write $x \sim y$ to denote $(x, y) \in R$.

For $x \in X$, the equivalence class of x in \sim is defined as:

$$[x]_\sim := \{ y \mid (x, y) \in R \}$$

When there is no confusion, we will omit the subscript \sim and simply write $[x]$.

Lemma 1.1 For an equivalence relation \sim over X, the following holds:

- $[x] = [y]$ if and only if $x \sim y$.
- If $[x] \neq [y]$, then $[x] \cap [y] = \emptyset$.

Theorem 1.2 For an equivalence relation \sim over X, the equivalence classes of R partition X, i.e., every member of X belongs to exactly one equivalence class.

Countable and uncountable sets:
Let \mathbb{N} be the set of natural numbers $\{0, 1, 2, \ldots\}$. A set X is countable, if there is an injective function from X to \mathbb{N}. Otherwise, it is called an uncountable set.

Theorem 1.3 The following sets are all countable.

1. The set $\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \}$ of integers.
2. The set \mathbb{N}^k, for every integer $k \geq 1$.
3. The set $\mathbb{N}^* := \bigcup_{k \geq 1} \mathbb{N}^k$.

Theorem 1.4 The set $2^\mathbb{N}$ is uncountable.
Poset (partially ordered set):

Let X be a set and R be a binary relation on X. The set X is a poset (w.r.t. R), if R is reflexive, anti-symmetric and transitive.

We will usually write (X, \leq) to denote a poset, i.e., the binary relation is denoted by \leq. To avoid clutter, we write $x \leq y$ to denote that (x, y) is the relation \leq.

Definition 1.5 An element m is a maximal element in a poset (X, \leq), if there is no element $x \in X$ such that $x \neq m$ and $m \leq x$.

Definition 1.6 A subset C of X is a chain in a poset (X, \leq), if for every $x, y \in C$, either $x \leq y$, or $y \leq x$. A chain C is bounded, if there is $z \in X$ such that for every $x \in C$, $x \leq z$.

2 Basic propositional calculus (Boolean logic)

Throughout this class, T and F are special symbols denoting true and false, respectively. The symbols $\neg, \land, \lor, \rightarrow$ and \leftrightarrow denote the negation, and, or, implication and iff operators on $\{T, F\}$, respectively, which are defined as follows.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \leftrightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Let $PV = \{p_1, p_2, \ldots\}$ to be a countable set of propositional variables. Sometimes we also write $p, q,$ or $q_1, q_2, \ldots\$ to denote propositional variables. Elements in PV are also called atomic formulas.

Definition 1.7 A well formed formula (wff) is a formula built up inductively as follows.

- Every propositional variable $p \in PV$ is a wff.
- If α and β are wffs, so are $(\neg \alpha), (\alpha \land \beta), (\alpha \lor \beta), (\alpha \rightarrow \beta)$ and $(\alpha \leftrightarrow \beta)$.

Usually we will use the term formula to mean wff.

The negation of a propositional variable p is $\neg p$. A literal is either a propositional variable or its negation. A formula is in conjunctive normal form (CNF), if it is of the form:

$$ (\ell_{0,0} \lor \cdots \lor \ell_{0,n_0}) \land (\ell_{1,0} \lor \cdots \lor \ell_{1,n_1}) \land \cdots \land (\ell_{k,0} \lor \cdots \lor \ell_{k,n_k}), $$

*A binary relation R on X is anti-symmetric, if the following holds: for every $a, b \in X$, if both (a, b) and (b, a) are in R, then $a = b$.

†For simplicity, we only consider PV a countable set. Although in general such assumption is not necessary, it will simplify our discussions a lot.
where each $\ell_{i,j}$ is a literal.

A formula is in disjunctive normal form (DNF), if it is of the form:

\[(\ell_{0,0} \land \cdots \land \ell_{0,n_0}) \lor (\ell_{1,0} \land \cdots \land \ell_{1,n_1}) \lor \cdots \lor (\ell_{k,0} \land \cdots \land \ell_{k,n_k}).\]

An assignment is a function that maps each propositional variable in PV to either T or F. The value of a formula α under an assignment w is defined inductively as follows.

- $w(\alpha) = w(p)$, if α is propositional variable p.
- $w(\neg \alpha) = \neg w(\alpha)$.
- $w(\alpha \land \beta) = w(\alpha) \land w(\beta)$.
- $w(\alpha \lor \beta) = w(\alpha) \lor w(\beta)$.
- $w(\alpha \rightarrow \beta) = w(\alpha) \rightarrow w(\beta)$.
- $w(\alpha \leftrightarrow \beta) = w(\alpha) \leftrightarrow w(\beta)$.

Definition 1.8

- An assignment w is a satisfying assignment for a formula α, denoted by $w \models \alpha$, if $w(\alpha) = T$. We also say that w is a model of α.
- Likewise, w is a satisfying assignment (or, a model) for a set X of formulas, denoted by $w \models X$, if $w \models \alpha$, for every $\alpha \in X$.
- A formula α is satisfiable, if it has a satisfying assignment, and accordingly, a set X of formulas is satisfiable, if it has a satisfying assignment.
- Two formulas α and β are equivalent, if for every assignment w, $w(\alpha) = w(\beta)$.

Sometimes we omit the brackets, when they are irrelevant. For example, $\alpha \land (\beta \land \gamma)$ and $(\alpha \land \beta) \land \gamma$ are equivalent, so the brackets can be omitted, and written simply as $\alpha \land \beta \land \gamma$.

Theorem 1.9 (Distributivity law for \land and \lor) For every formulas α, β, γ, the following holds.

- $\alpha \land (\beta \lor \gamma)$ and $(\alpha \land \beta) \lor (\alpha \land \gamma)$ are equivalent.
- $\alpha \lor (\beta \land \gamma)$ and $(\alpha \lor \beta) \land (\alpha \lor \gamma)$ are equivalent.

A formula α using only atomic formulas p_1, \ldots, p_n defines a function $f_\alpha : \{T,F\}^n \rightarrow \{T,F\}$, where for every $(v_1, \ldots, v_n) \in \{T,F\}^n$

\[f_\alpha(v_1, \ldots, v_n) = v \quad \text{if and only if} \quad \begin{cases} \text{under the assignment } w \\ \text{where } w(p_i) = u_i, \text{ for each } i = 1, \ldots, n, \\ w(\alpha) = v. \end{cases} \]

Definition 1.10 A set Γ of operators is complete, if for every integer $n \geq 1$, for every function $g : \{T,F\}^n \rightarrow \{T,F\}$, there is a formula α using only operators from Γ such that $f_\alpha = g$.

Theorem 1.11

(a) For every function $g : \{T,F\}^n \rightarrow \{T,F\}$, there is a formula α in DNF such that $f_\alpha = g$.

(b) Similarly, for every function $g : \{T,F\}^n \rightarrow \{T,F\}$, there is a formula α in CNF such that $f_\alpha = g$.

Corollary 1.12 The set $\{\neg, \land, \lor\}$ is complete.
Exercises

(1) Let \(\mathbb{R} \) be the set of real numbers. Prove that \((\mathbb{R}, \leq) \) is a poset, where \(\leq \) is the standard order relations on \(\mathbb{R} \).

(2) Give an example of a bounded chain in the poset \((\mathbb{R}, \leq) \).

(3) Give an example of an unbounded chain in the poset \((\mathbb{R}, \leq) \).

(4) Let \(A \) be a set and \(\mathcal{F} \) be a collection of subsets of \(A \). Define a relation \(\preceq \) on elements of \(\mathcal{F} \):

\[
 x \preceq y \quad \text{if and only if} \quad x \subseteq y
\]

Prove that \((\mathcal{F}, \preceq) \) is a poset.

Note: This poset is usually denoted by \((\mathcal{F}, \subseteq) \).

(5) Give an example of a poset \((\mathcal{F}, \subseteq) \) in which every chain is bounded.

(6) Give an example of a poset \((\mathcal{F}, \subseteq) \) in which there is an unbounded chain.

(7) Consider a poset \((\mathcal{F}, \subseteq) \) where \(\mathcal{F} \) is a collection of subsets of a set \(A \). Suppose that for every chain \(C \) in \(\mathcal{F} \), the set \(\bigcup C \) is in \(\mathcal{F} \).

Assuming Zorn’s lemma, prove that there is an element \(M \in \mathcal{F} \) such that there is no \(X \in \mathcal{F} \) where \(M \subseteq X \).

(8) Write down the equivalent formulas for \(x \leftrightarrow y \) in DNF and CNF.

(9) Write down the formulas in DNF and CNF for the following function \(f(p, q, r) \):

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(q)</td>
<td>(r)</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

\[f(p, q, r) = \]

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

(10) Prove that \(\{\neg, \wedge\} \) and \(\{\neg, \vee\} \) are complete.

(11) Define the operators NAND and NOR, denoted by \(p \bar{\wedge} q \) and \(p \bar{\vee} q \), respectively, as follows.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p \bar{\wedge} q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p \bar{\vee} q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

That is, \(p \bar{\wedge} q \) is equivalent to \(\neg(p \wedge q) \) and \(p \bar{\vee} q \) is equivalent to \(\neg(p \vee q) \). Prove that \(\{\bar{\wedge}\} \) and \(\{\bar{\vee}\} \) are complete.

(12) Prove part (b) of Theorem 1.11.
Appendix

A Basic set theoretic notations

Sets:

- A set is a collection of things, which are called its members or elements.
 \(a \in X \) (read: \(a \) is in \(X \), or \(a \) belongs to \(X \)) means \(a \) is a member or an element of \(X \). \(a \notin X \) means that \(a \) is not a member of \(X \).
- An empty set is denoted by \(\emptyset \).
- \(X \) is a subset of \(Y \), denoted by \(X \subseteq Y \), if every element of \(X \) is also an element of \(Y \).
- \(X \) is a proper subset of \(Y \), denoted by \(X \subset Y \), if \(X \neq Y \) and \(X \subseteq Y \).
- For two sets \(X \) and \(Y \), we write \(X \cap Y \) and \(X \cup Y \) to denote their intersection and union, respectively.
- Let \(X \) be a set whose elements are also sets. Then, \(\bigcup X \) and \(\bigcap X \) denote the following.
 \[
 \bigcup X := \{ a \mid a \text{ belongs to an element in } X \}
 \]
 \[
 \bigcap X := \{ a \mid a \text{ belongs to every element in } X \}
 \]
- The cartesian product between two sets \(X \) and \(Y \) is the following.
 \[
 X \times Y := \{(a, b) \mid a \in X \text{ and } b \in Y \}.
 \]
 We write \(X^n \) to denote \(X \times \cdots \times X \) (\(X \) appears \(n \) times).

Relations:

- A relation \(R \) over two sets \(X, Y \) is a subset of \(X \times Y \).
- A binary relation \(R \) over \(X \) is a subset of \(X \times X \).
- An \(n \)-ary relation \(R \) over \(X \) is a subset of \(X^n \).

Functions:

- A relation \(R \) over \(X, Y \) is a function or a mapping, if for every \(x \in X \), there is exactly one \(y \in Y \) such that \((x, y) \in R \).
 In this case, we will say \(R \) is a function from \(X \) to \(Y \), or \(R \) maps \(X \) to \(Y \). We denote it by \(R : X \to Y \).
- We will usually use the letters \(f, g, h, \ldots \) to represent functions. As usual, we write \(f(x) \) to denote the element \(y \) in which \((x, y) \in f \).
- A function \(f : X \to Y \) is an injective function, if for every \(y \in Y \), there is at most one \(x \in X \) such that \(f(x) = y \). An injective function is also called an injection.
- A function \(f : X \to Y \) is a surjective function, if for every \(y \in Y \), there is at least one \(x \in X \) such that \(f(x) = y \).
- A function \(f : X \to Y \) is a bijection, if it is both injective and surjective.
B Axiom of choice, Zorn’s lemma and Well-ordering theorem

The three statements below are equivalent and they are usually taken as “axioms” in mathematics.

Axiom of choice: Let \(I \) be a set such that each \(i \in I \) is associated with a set \(A_i \). There is a function \(f : I \to \bigcup A_i \) such that for every \(i \in I \), \(f(i) \in A_i \).

Zorn’s lemma: Let \((A, \preceq)\) be a poset such that every chain in \(A \) is bounded. There is an element \(m \in A \) such that for every \(x \in A \), if \(m \preceq x \), then \(x = m \).

(In other words, there is no element bigger than \(m \).)

Well-ordering theorem: Every set can be well-ordered. That is, for every set \(A \), there is a total order relation \(\leq \) on \(A \), that is, it satisfies the following conditions:

- Antisymmetry: for every \(a, b \in A \), if \(a \leq b \) and \(b \leq a \), then \(a = b \);
- Transitive: if \(a \leq b \) and \(b \leq c \), then \(a \leq c \);
- Totality: for every \(a, b \in A \), either \(a \leq b \) or \(b \leq a \),

such that for every nonempty subset \(B \subseteq A \) has a minimal element (w.r.t. \(\leq \)).

There is a kind of contradiction here: the axiom of choice is viewed as obviously “correct,” while the well-ordering theorem is obviously “false,” and there are mixed opinions about Zorn’s lemma.