Part 3: Decidable and undecidable languages

Theme: Turing machines as the most general model of computation.

1 Turing machines

We reserve a special symbol \(\sqcup \), called the blank symbol.

A Turing machine (TM) is a system \(\mathcal{M} = (\Sigma, \Gamma, q_0, q_{\text{acc}}, q_{\text{rej}}, \delta) \), where each component is as follows.

- \(\Sigma \) is a finite alphabet, called the input alphabet, where \(\sqcup \notin \Sigma \).
- \(\Gamma \) is a finite alphabet, called the tape alphabet, where \(\Sigma \subseteq \Gamma \) and \(\sqcup \in \Gamma \).
- \(Q \) is a finite set of states.
- \(q_0 \in Q \) is the initial state.
- \(q_{\text{acc}}, q_{\text{rej}} \in Q \) are two special states called the accept and reject states, respectively.
- \(\delta : Q \setminus \{q_{\text{acc}}, q_{\text{rej}}\} \times \Gamma \to Q \times \Gamma \times \{\text{Left, Right}\} \) is the transition function.

Intuitively, the intuitive meaning of \(\delta(p, a) = (q, b, \alpha) \) is as follows. When the head reads a symbol \(a \), if \(\mathcal{M} \) is in state \(p \), it “writes” symbol \(b \) on top of \(a \), enters state \(q \), and the head moves left, if \(\alpha = \text{Left} \), or moves right, if \(\alpha = \text{Right} \).

To describe how a TM computes, we need a few terminologies. A configuration of \(\mathcal{M} \) is a string \(C \) from \((Q \cup \Gamma)^* \) which contains exactly one symbol from \(Q \). We call such symbol the state of \(C \). Intuitively, a configuration \(C = a_1 \cdots a_{i-1} pa_i \cdots a_m \) means the content of the tape \(a_1 \cdots a_m \) and that \(\mathcal{M} \) is in state \(p \) with the head in position \(i \).

On input word \(w \in \Sigma^* \), the initial configuration of \(\mathcal{M} \) on \(w \) is the string \(qow \). A configuration is called accepting, if it contains \(q_{\text{acc}} \), and it is called rejecting, if it contains \(q_{\text{rej}} \). A halting configuration is either an accepting or a rejecting configuration.

Let \(C = a_1 \cdots a_{i-1} pa_i \cdots a_m \) be a configuration, where \(a_1, \ldots, a_m \in \Gamma \) and \(p \in Q \) such that \(p \neq q_{\text{acc}}, q_{\text{rej}} \). The transition \(\delta \) yields the subsequent configuration \(C' \), denoted by \(C \vdash C' \), as follows.

- If \(\delta(p, a_i) = (q, b, \text{Left}) \) and \(i \geq 2 \), then \(C' = a_1 \cdots a_{i-2} qa_{i-1}ba_{i+1} \cdots a_m \).
- If \(\delta(p, a_i) = (q, b, \text{Right}) \) and \(i \leq m - 1 \), then \(C' = a_1 \cdots a_{i-1} b qa_{i+1} \cdots a_m \).
- If \(\delta(p, a_i) = (q, b, \text{Right}) \) and \(i = m \), then \(C' = a_1 \cdots a_{m-1} b q\sqcup \).

The run of \(\mathcal{M} \) on \(w \) is the (possibly infinite) sequence:

\[
C_0 \vdash C_1 \vdash C_2 \vdash \cdots \tag{1}
\]

where \(C_0 \) is the initial configuration of \(\mathcal{M} \) on \(w \).

\(\mathcal{M} \) stops when it reaches a configuration \(C = a_1 \cdots a_{i-1} pa_i \cdots a_m \) where there is no \(C' \) where \(C \vdash C' \). For such case, we say that \(\mathcal{M} \) halts on \(w \) in configuration \(C \) and \(C \) must satisfy one of the two conditions below holds.

- \(C \) is a halting configuration.
- \(i = 1 \) and \(\delta(p, a_i) = (q, b, \text{Left}) \), i.e., the head still moves left when it is already on the leftmost position of the tape and “falls” off the tape.

[1]
If M halts in an accepting configuration, then we say that M accepts w. If it halts in a rejecting configuration, then we say that M rejects w. We denote by $L(M)$ the language that consists of all the words accepted by M. Formally,

$$L(M) := \{w \mid M \text{ accepts } w\}$$

Proposition 3.1 below states that we can always assume that when a Turing machine halts, it halts in either an accepting or rejecting configuration.

Proposition 3.1 For every Turing machine M, there is another Turing machine M' such that for every $w \in \Sigma^*$ the following holds.

- M accepts w if and only if M' accepts w.
- M rejects w if and only if M' rejects w.

For all w neither accepted nor rejected by M, M' does not halt on w.

In other words, Proposition 3.1 implies that we can assume that on any input, the head of M' never falls off the tape.

Some important terminologies.

- We say that M recognizes a language L, if:

 (i) for every word $w \in L$, M accepts w;

 (ii) for every word $w \notin L$, M does not accept w.

 Note that M does not accept w can have two meanings: either M rejects w, or M does not halt on w.

- We say that M decides a language L, if for every word w,

 (i) if $w \in L$, M accepts w,

 (ii) if $w \notin L$, M rejects w.

 Note that this implies M halts on every word $w \in \Sigma^*$.

- A language L is recognizable/recursively enumerable (r.e.), if there is a TM M that recognizes L.

- A language L is decidable/recursive, if there is a TM M that decides L.

 Otherwise, it is called undecidable.

2 Multi-tape Turing machines

A multi-tape Turing machine is a Turing machine that has a few tapes. On each tape, the Turing machine has one head. Formally, it is defined as follows. Let $k \geq 1$. A k-tape Turing machine is $M = (\Sigma, \Gamma, Q, q_0, q_{\text{acc}}, q_{\text{rej}}, \delta)$, where δ is a function

$$\delta : (Q - \{q_{\text{acc}}, q_{\text{rej}}\}) \times \Gamma^k \to Q \times \Gamma^k \times \{\text{Left, Right, Stay}\}^k$$

As before, an element of δ is written in the form:

$$(q, a_1, \ldots, a_k) \to (p, b_1, \ldots, b_k, \alpha_1, \ldots, \alpha_k).$$
Intuitively, it means that if the TM is in state q, and on each $i = 1, \ldots, k$, the head on tape i is reading a_i, then it enters state p, and for $i = 1, \ldots, k$, the head on tape i writes the symbol b_i and moves according to α_i.

A configuration of M is of the form (q, u_1, \ldots, u_k), where $q \in Q$ and each u_i is a string over $\Gamma \cup \{\bullet\}$ and the symbol \bullet appears exactly once in each u_i. The symbol \bullet is to denote the position of the head.

The input is always written in the first tape. All the other tapes are initially blank. Formally, the initial configuration on input w is $(q_0, w, \bullet, \ldots, \bullet)$.

The notion of "one step computation" $C \vdash C'$ is defined similarly as in the standard Turing machine. Likewise, the conditions of acceptance and rejection are defined as when the Turing machines enters the accepting and rejecting states, respectively.

Theorem 3.2 For every language L, the following holds.

- If L is recognized by a k-tape TM M, then there is a single tape TM M' that recognizes L.
- If L is decided by a k-tape TM M, then there is a single tape TM M' that decides L.

3 Non-deterministic Turing machines

A non-deterministic Turing machine (NTM) $M = \langle \Sigma, \Gamma, Q, q_0, q_{\text{acc}}, q_{\text{rej}}, \delta \rangle$ is defined as the standard Turing machine, with the exception that δ is now a relation:

$$\delta \subseteq (Q - \{q_{\text{acc}}, q_{\text{rej}}\}) \times \Gamma \times Q \times \Gamma \times \{\text{Left}, \text{Right}, \text{Stay}\}$$

As before, we write an element of δ is in the form:

$$(q, a) \rightarrow (p, b, \alpha).$$

The initial configuration of M on input word w is q_0w. For two configurations C, C', the notion of "one step computation" $C \vdash C'$ is defined similarly as in the standard Turing machine. A run of M on input w is a sequence:

$$C_0 \vdash C_1 \vdash \cdots,$$

where C_0 is the initial configuration on w. A run is accepting/rejecting, if it ends up in an accepting/rejecting configurations, respectively. However, due to non-determinism, for each C there can be a few configuration C' such that $C \vdash C'$, thus, there can be many runs. Some are accepting, some are rejecting, and some other do not halt.

Important definitions.

- An NTM M accepts w, if there is an accepting run of M on w.
- An NTM M rejects w, if all runs of M on w are rejecting.
- A language L is decided by an NTM M, if
 - for every $w \in L$, M accepts w;
 - for every $w \notin L$, M rejects w.
- A language L is recognized by an NTM M, if
 - for every $w \in L$, M accepts w;
 - for every $w \notin L$, M does not accepts w.

3/9
Recall that the standard TM is always deterministic. To avoid potential confusion, we will use the abbreviation DTM to mean deterministic Turing machine.

Theorem 3.3 For every language \(L \), the following holds.

- If \(L \) is recognized by an NTM \(M \), then there is a DTM \(M' \) that recognizes \(L \).
- If \(L \) is decided by an NTM \(M \), then there is a DTM \(M' \) that decides \(L \).

The computation of an NTM \(M \) on input \(w \) can be pictured as a tree whose nodes are configurations of \(M \) defined as follows.

- The root node is the initial configuration \(q_0w \).
- The children of a node \(C \) are all possible \(C' \) where \(C \vdash C' \).

4 Some theorems on recognizable and decidable languages

Theorem 3.4

- If a language \(L \) is decidable, so is its complement \(\Sigma^* - L \).
- If both a language \(L \) and its complement \(\Sigma^* - L \) are recognizable, then \(L \) is decidable.

Theorem 3.5

- Recognizable languages are closed under union, intersection, concatenation and Kleene star.
- Decidable languages are closed under union, intersection, complement, concatenation and Kleene star.

5 Universal Turing machine and halting problem

The string representation of a Turing machine. Recall that a Turing machine is defined as a system \(M = (\Sigma, \Gamma, Q, q_0, q_{acc}, q_{rej}, \delta) \), where we can assume that \(\Sigma = \{0, 1\} \) and \(\Gamma = \{\langle, 0, 1, \sqcup\} \).

Without loss of generality, we can also assume that \(Q = \{0, 1, \ldots, n\} \) for some positive integer \(n \) with 0 being the initial state.

We note the following.

- Each state \(i \in Q \) is written as a string in its binary form.
- Each transition \((i, a) \rightarrow (j, b, \alpha) \in \delta \) can be written as string over the symbols 0, 1, (,), , , \langle, \sqcup, L, R, S, \) where the symbol \(\sqcup \) represents \(\sqcup \), and L, R, S represent Left, Right, Stay, respectively.

So, the whole system \(M = (\Sigma, \Gamma, Q, 0, q_{acc}, q_{rej}, \delta) \) can be written as a string:

\[
[\Sigma] \# [\Gamma] \# [Q] \# [0] \# [q_{acc}] \# [q_{rej}] \# [\delta]
\]

where \([\cdot]\) denotes the string representing the component \(\cdot \) and \(\# \) the symbol separating two consecutive components.[⁴]

This shows that every Turing machine (whose tape alphabet is \(\Gamma = \{\langle, 0, 1, \sqcup\} \)) can be described as a string over a fixed set of the symbols, i.e., 0, 1, (,), , , \langle, \sqcup, L, R, S, \# . All these symbols can be further encoded into strings over 0 and 1 to obtain a binary string, which we denote by \([M]\). That is, \([M]\) is the binary string representing the Turing machine \(M \). Sometimes, we will also say \([M]\) is the string description of \(M \), or the description of \(M \), for short.

Obviously, since we consider only Turing machines with \(\Sigma = \{0, 1\} \) and \(\Gamma = \{\langle, 0, 1, \sqcup\} \), it is not necessary to include them in \([M]\). But for the sake of consistency in our notation, we simply include them.
Universal Turing machine (UTM). A universal Turing machine (UTM) is a Turing machine \(U \) that gets as input a description of a Turing machine \([M]\) and a word \(w \). On such input, it simulates \(M \) on \(w \). (Some textbooks use the phrase “it runs \(M \) on \(w \)” for “it simulates \(M \) on \(w \).”)

Halting problem. We define the following languages:

\[
\text{HALT} := \{[M]\$w \mid M \text{ accepts } w \text{ where } w \in \{0,1\}^*\}. \\
\text{HALT}_0 := \{[M] \mid M \text{ accepts } [M]\}. \\
\text{HALT}_0' := \{[M] \mid M \text{ does not accept } [M]\}.
\]

Theorem 3.6 \(\text{HALT}_0' \) is undecidable.

Corollary 3.7 \(\text{HALT}_0 \) and \(\text{HALT} \) are undecidable.

Proposition 3.8 The language \(\text{HALT}_0 \) and \(\text{HALT} \) are recognizable (recursively enumerable).

Recall that if both \(L \) and its complement \(\overline{L} = \Sigma^* - L \) are recognizable, then both are decidable. Then, the following corollary follows immediately from above.

Corollary 3.9 The language \(\text{HALT} \) is not recognizable (recursively enumerable).

6 Reducibility

Consider a function \(F : \Sigma^* \to \Sigma^* \). A TM \(M \) that computes \(F \) is a TM that accepts every word \(w \in \Sigma^* \) and when it halts, the content of its tape is \(F(w) \). That is, on every word \(w \), \(M \) accepts \(w \) with the accepting run:

\[
q_0 \quad w \quad \vdash \cdots \vdash \quad q_{\text{acc}} \quad F(w)
\]

A function is **computable**, if there is a TM that computes it.

Definition 3.10 A language \(L_1 \) is mapping reducible to another language \(L_2 \), denoted by \(L_1 \leq_m L_2 \), if there is a computable function \(F \) such that for every \(w \in \Sigma^* \):

\[
w \in L_1 \text{ if and only if } F(w) \in L_2
\]

The function \(f \) is called **mapping reduction**.

Sometimes we omit the word “mapping” and call it simply “reducible” or “reduction,” instead of “mapping reducible” or “mapping reduction.” Intuitively \(L_1 \leq_m L_2 \) means that \(L_2 \) is “computationally more general,” or “more general” than \(L_1 \) and that a TM for deciding \(L_2 \) can be used to decide \(L_1 \).

Definition 3.11 A language \(L_1 \) is Turing reducible to another language \(L_2 \), denoted by \(L_1 \leq_T L_2 \), if by assuming that \(L_2 \) is decidable by a TM \(M_2 \), there is a TM \(M_1 \) that decides \(L_1 \) using \(M_2 \) as a “subroutine.”

Moreover, we also assume that \(M_2 \) decides \(L_2 \) in one step. We call \(M_1 \) a TM with oracle access to \(L_2 \).

Obviously, if \(L_1 \leq_m L_2 \), then \(L_1 \leq_T L_2 \). Also, if \(L_1 \leq_T L_2 \) and \(L_1 \) is undecidable, so is \(L_2 \).
6.1 Some variants of Halting problem

The following languages are all undecidable.

- \(L_0 := \{ [M] \mid L(M) = \emptyset \} \).
 That is, \([M] \in L_0\) if and only if \(M\) does not accept any word.

- \(L_1 := \{ [M] \mid L(M) = \{0, 1\}^* \} \).
 That is, \([M] \in L_1\) if and only if \(M\) accepts every word.

- \(L_2 := \{ [M] \mid M \text{ accepts the empty word } \epsilon \} \)
 That is, \([M] \in L_2\) if and only if \(M\) accepts the empty word \(\epsilon\).

- \(L_3 := \{ [M] \mid M \text{ accepts the word } 1101 \} \).

- \(L_4 := \{ [M] \mid L(M) = \{a^n b^n \mid n \geq 0\} \} \).

- \(L_5 := \{ [M] \mid L(M) \text{ is a regular language} \} \).

6.2 Some undecidable problems concerning CFL

The non-emptiness problem for the intersection of two CGL’s. We define the CFL-Intersection problem is defined as follows.

<table>
<thead>
<tr>
<th>CFL-Intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Two CFG’s (G_1 = (\Sigma, V_1, R, S)) and (G_2 = (\Sigma, V_2, R_2, S_2)).</td>
</tr>
<tr>
<td>Task: Output True, if (L(G_1) \cap L(G_2) \neq \emptyset). Otherwise, output False.</td>
</tr>
</tbody>
</table>

Theorem 3.12 The problem CFL-Intersection is undecidable.

The CFL universality problem. The problem CFL-Universality is defined as follows.

<table>
<thead>
<tr>
<th>CFL-Universality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A CFG (G = (\Sigma, V, R, S)).</td>
</tr>
<tr>
<td>Task: Output True, if (L(G) = \Sigma^*). Otherwise, output False.</td>
</tr>
</tbody>
</table>

Theorem 3.13 The problem CFL-Universality is undecidable.

The CFL subset problem. This problem, denoted by CFL-Subset, is defined as follows.

<table>
<thead>
<tr>
<th>CFL-Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Two CFG’s (G_1) and (G_2).</td>
</tr>
<tr>
<td>Task: Output True, if (L(G_1) \subseteq L(G_2)). Otherwise, output False.</td>
</tr>
</tbody>
</table>

Theorem 3.14 The problem CFL-Subset is undecidable.
7 Post correspondence problem (PCP)

Post Correspondence Problem, denoted by PCP, is defined as follows.

<table>
<thead>
<tr>
<th>PCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Task:</td>
</tr>
</tbody>
</table>

Theorem 3.15 PCP is undecidable.

Appendix

A Turing machines with Stay option

In some textbooks, Turing machines are defined such that the head can stay put, instead of moving Left or Right. Formally, a transition can be of the form:

\[(q, a) \rightarrow (p, b, \alpha)\]

where \(\alpha \in \{\text{Left}, \text{Right}, \text{Stay}\}\).

If \(\alpha = \text{Stay}\), then the head stays where it is. Such Stay option is obviously equivalent to making two moves: Right, and followed by Left, thus, does not add any power of computation.

B Putting a marker on the leftmost cell of the tape

To prevent the head falls off the tape, we reserve a special symbol \(<\) that can be used to mark the leftmost cell of the tape of Turing machines. We describe a TM, denoted by \(M_{sr}\), that on input \(w \in \Sigma^*\), it will always halt in the accepting configuration \(<q_{acc}\#w>\).

- \(\Sigma = \{0, 1\}\).
- \(\Gamma = \{\leftarrow, 0, 1, \sqcup\}\).
- \(Q = \{q_0, q, s, q_{acc}, q_{rej}\}\).
- \(\delta\) consists of the following:

 - \((q_0, 1) \rightarrow (p, <, \text{Right})\)
 - \((q_0, 0) \rightarrow (r, <, \text{Right})\)
 - \((q_0, \sqcup) \rightarrow (q_{acc}, <, \text{Right})\)
 - \((q_0, <) \rightarrow (q_{rej}, <, \text{Right})\)
 - \((p, 1) \rightarrow (p, 1, \text{Right})\)
 - \((p, 0) \rightarrow (r, 0, \text{Right})\)
 - \((p, \sqcup) \rightarrow (s, \sqcup, \text{Left})\)
 - \((p, <) \rightarrow (q_{rej}, <, \text{Right})\)
 - \((r, 1) \rightarrow (p, 1, \text{Right})\)
 - \((r, 0) \rightarrow (r, 0, \text{Right})\)
 - \((r, \sqcup) \rightarrow (s, \sqcup, \text{Left})\)
 - \((r, <) \rightarrow (q_{rej}, <, \text{Right})\)
 - \((s, 0) \rightarrow (s, 0, \text{Left})\)
 - \((s, 1) \rightarrow (s, 1, \text{Left})\)
 - \((s, <) \rightarrow (q_{acc}, <, \text{Right})\)
 - \((s, \sqcup) \rightarrow (q_{rej}, <, \text{Right})\)

The construction above can be easily generalized for arbitrary \(\Sigma\).

This \(M_{sr}\) can now be run as a precursor of an arbitrary Turing machine whose head never moves left whenever it reads the marker \(<\). Thus, we can always assume that the head never falls off the tape.
C Encoding an arbitrary alphabet into the binary alphabet \{0, 1\}

Turing machines are usually defined with arbitrary input and tape alphabets. It is not difficult to show that any alphabet can be “encoded” with binary alphabet.

Suppose \(\Gamma = \{a_1, \ldots, a_n, \bot\}\). Each symbol \(a_i\) can then be encoded with a 0-1 string of length \([\log_2 n]\). For example, if \(\Gamma = \{a_1, \ldots, a_5, \bot\}\), we can encode \(a_1\) with 000, \(a_2\) with 001, \(a_3\) with 010, \(a_4\) with 011, and \(a_5\) with 100. We denote by \(\langle a_i \rangle\) the encoding of the symbol \(a_i\). For a word \(w \in \Gamma^*\), \(\langle w \rangle\) denotes the encoding of \(w\) by replacing each symbol \(a_i\) in \(w\) with \(\langle a_i \rangle\). For example, if \(w = a_1 a_5 a_2 a_1\), \(\langle w \rangle = \langle a_1 \rangle \langle a_3 \rangle \langle a_2 \rangle \langle a_1 \rangle = 000 100 001 000\).

We have the following proposition that shows that we can always assume that the Turing machines under consideration always work on tape alphabet \(\Gamma = \{\bot, 0, 1, \bot\}\), where \(\bot\) is the marker that marks the leftmost cell of the tape.

Proposition 3.16 Let \(M = \langle \Sigma, \Gamma, Q, q_0, q_{\text{acc}}, q_{\text{rej}}, \delta \rangle\) be a TM, where \(\Gamma = \{a_1, \ldots, a_n, \bot\}\). Let \(K = [\log_2 n]\). Let \(\langle a_i \rangle\) be an encoding of symbol \(a_i\) with 0-1 string of length \(K\). There is a TM \(M' = \langle \{0, 1\}, \{\bot, 0, 1, \bot\}, Q', q_0', q_{\text{acc}}, q_{\text{rej}}, \delta' \rangle\) such that for every word \(w \in \Sigma^*\), the following holds.

\[M\ \text{accepts} \ w \ \text{if and only if} \ M'\ \text{accepts} \ \langle w \rangle\]

Intuitively, \(M'\) simulates \(M\) by reading the tapes by blocks of \([\log_2 n]\) cells. It then remembers the block that it reads in its states, and “simulates” the transitions of \(M\) accordingly.

Formally, \(M = \langle \{0, 1\}, \{0, 1, \bot\}, Q, q_0, q_{\text{acc}}, q_{\text{rej}}, \delta \rangle\) is defined as follows. Let \(\{0, 1\}^{\leq K}\), i.e., the set of all 0-1 strings of length less than or equal to \(K = [\log_2 n]\).

\[Q' = (Q \times \{0, 1\}^{\leq K}) \cup (Q \times \{L_1, \ldots, L_K, R_1, \ldots, R_K\})\]

\[\cup (Q \times \{L, R\} \times W \times \{0, 1\}^{\leq K}).\]

- \(q'_0 = (q_0, \epsilon)\).

- \(\delta'\) is defined as follows.

 - For every \(u \in \{0, 1\}^{\leq K-1}\), for every \(p \in Q - \{q_{\text{acc}}, q_{\text{rej}}\}\), \(\delta'\) consists of the following transitions.

 \[((p, u), 0) \rightarrow ((p, u0), 0, \text{Right})\]

 \[((p, u), 1) \rightarrow ((p, u1), 1, \text{Right})\]

 - For every \((q, a) \rightarrow (p, b, \text{Left}) \in \delta\), for every \(d \in \{0, 1, \bot\}\), \(\delta'\) consists of the following transitions.

 \[((q, \langle a \rangle), d) \rightarrow ((p, \underline{L}, W, \langle b \rangle), d, \text{Left})\]

 - For every \((q, a) \rightarrow (p, b, \text{Right}) \in \delta\), for every \(d \in \{0, 1, \bot\}\), \(\delta'\) consists of the following transitions.

 \[((q, \langle a \rangle), d) \rightarrow ((p, \underline{R}, W, \langle b \rangle), d, \text{Left})\]

 - For every \(p \in Q\), for every \(c \in \{0, 1\}\), for every \(v \in \{0, 1\}^{\leq K-1}\) and \(v \neq \epsilon\), for every \(d \in \{0, 1, \bot\}\), for every \(\beta \in \{L, R\}\), \(\delta'\) consists of the following transitions.

 \[((p, \beta, W, vc), d) \rightarrow ((p, \beta, W, v), c, \text{Left})\]
For every $p \in Q$, for every $d \in \{\prec, 0, 1, \sqcup\}$, δ' consists of the following transitions.

\[
(p, L, W, \epsilon, d) \rightarrow (p, L_k, d, \text{Right})
\]

For every $p \in Q$, for every $d \in \{\prec, 0, 1, \sqcup\}$, δ' consists of the following transitions.

\[
(p, R, W, \epsilon, d) \rightarrow (p, R_k, d, \text{Right})
\]

For every $p \in Q$, for every $d \in \{0, 1, \sqcup\}$, δ' consists of the following transitions.

\[
(p, L, W, \epsilon, d) \rightarrow (p, L_k, d, \text{Right})
\]

For every $p \in Q$, for every $d \in \{0, 1, \sqcup\}$, δ' consists of the following transitions.

\[
(p, R_1, d) \rightarrow (p, \epsilon, d, \text{Right})
\]

\[
(p, L_1, d) \rightarrow (p, \epsilon, d, \text{Left})
\]

All the other transitions not specified above are assumed to enter q_{rej}.
