Lesson 10: Löwenheim-Skolem theorem and categorical sets

Theme: Cardinals of first-order structures.

1 Cardinal numbers

- Two sets A and B have the same cardinality, if there is a bijection from A to B, denoted by $|A| = |B|$.
- In the same spirit, $|A| \leq |B|$, if there is an injective function from A to B.
- $|A| < |B|$, if $|A| \leq |B|$ and $|A| \neq |B|$.

For $i \in \{0, 1, 2, \ldots\}$, we define \aleph_i and \beth_i as follows.

- Both \aleph_0 and \beth_0 denote \mathbb{N}.
- For each $i \geq 1$, \aleph_i denotes the minimal set such that $|\aleph_i| > |\aleph_{i-1}|$.
- For each $i \geq 1$, \beth_i denotes $2^{\beth_{i-1}}$.

Abusing the notation, we will often regard each \aleph_i and \beth_i as “cardinalities.” So, when we write $A = \aleph_i$ and $A = \beth_i$, we mean $|A| = |\aleph_i|$ and $|A| = |\beth_i|$, respectively. Likewise, such abuse also applies for $<$ and \leq comparisons.

Theorem 10.1 (Cantor’s theorem) $|A| < |2^A|$, for every set A.

Cantor’s theorem implies that the sequence $\beth_0, \beth_1, \beth_2, \ldots$ will never end, which in turn implies that the sequence $\aleph_0, \aleph_1, \aleph_2, \ldots$ will also never end. The so called *Continuum Hypothesis* (CH) states the following.

$$\aleph_1 = \beth_1$$

2 Löwenheim-Skolem theorem

Theorem 10.2 (Löwenheim-Skolem theorem) If $X \subseteq \text{FO}[L]$ is satisfiable, and L is countable, then X is satisfied by a countable structure.

Theorem 10.3 (Downward Löwenheim-Skolem theorem) If $X \subseteq \text{FO}[L]$ is satisfiable, and L is of cardinality λ, then X is satisfied by a structure with cardinality $\leq \lambda$.

Theorem 10.4 (Upward Löwenheim-Skolem-Tarski theorem) If $X \subseteq \text{FO}[L]$ is satisfiable, and L is of cardinality λ, then for every cardinal number $\kappa \geq \lambda$, there is a structure with cardinality κ that satisfies X.

Corollary 10.5

(a) Let $X \subseteq \text{FO}[L]$, where L is countable. If X has an infinite model, then X has models of every infinite cardinality.

(b) Let A be an infinite structure for a countable vocabulary L. Then, for every infinite cardinal λ, there is a structure B of cardinality λ, such that $A \equiv B$.
3 Categorical sets

A set X is **categorical**, if every two models of X is isomorphic.

Proposition 10.6 If X has an infinite model, then X is not categorical.

A theory T is \aleph_0-**categorical**, if all infinite countable models of T are isomorphic. A theory T is κ-**categorical**, if all models of T of cardinality κ are isomorphic.

Theorem 10.7 (Łoś-Vaught Test) Let T be a theory over a countable vocabulary. Assume that T has no finite models.

(a) If T is \aleph_0-categorical, then T is complete.

(b) If T is κ-categorical for some infinite cardinal κ, then T is complete.

4 The ZFC system

The ZFC system (Zermelo-Fraenkel-Axiom of Choice) is a set of axioms that describe mathematics being founded entirely on set theory. The vocabulary has only one binary relation ε, which intuitively represents the standard relation \in.

The ZFC system consists of the following axioms.

Extensionality axiom: $\forall x \forall y \left(\forall z (z \varepsilon x \leftrightarrow z \varepsilon y) \rightarrow x \approx y \right)$.

Intuitively, this means that if x and y have the same members, then x and y are the same.

Separation axioms: $\forall x_1 \cdots \forall x_n \forall x \exists y \forall z \left(z \varepsilon y \leftrightarrow (z \varepsilon x \land \varphi(z, x_1, \ldots, x_n)) \right)$.

The formula φ is over the vocabulary $\{\varepsilon\}$. Intuitively, it means that for a set x, and a “property” φ, there is a set y that contains precisely the elements in x that satisfies φ.

Pairing axiom: $\forall x \forall y \exists z \forall w \left(w \varepsilon z \leftrightarrow (w \approx x \lor w \approx y) \right)$.

Intuitively, it means that for every two sets x and y, the set $\{x, y\}$ exists.

Union axiom: $\forall x \exists y \forall z \left(z \varepsilon y \leftrightarrow \exists w (w \varepsilon x \land z \varepsilon w) \right)$.

Intuitively, it means that for every set x, the set $\bigcup x$ exists.

Power set axiom: $\forall x \exists y \forall z \left(z \varepsilon y \leftrightarrow \forall w (w \varepsilon z \rightarrow w \varepsilon x) \right)$.

Intuitively, it means that for every set x, the set 2^x exists.

Infinity axiom: $\exists x \left(\emptyset \varepsilon x \land \forall y \left(y \varepsilon x \rightarrow y \cup \{y\} \varepsilon x \right) \right)$

Intuitively, it means that there is an infinite set containing $\emptyset, 1, 2, \ldots$, where \emptyset stands for \emptyset, $\hat{1}$ stands for $\{\emptyset\}$, and $\hat{n} = \{1, \ldots, n-1\}$.

Note that both $\emptyset \varepsilon x$ and $y \cup \{y\} \varepsilon x$ are abbreviations, where $\emptyset \varepsilon x$ represents “$\emptyset \in x$,” i.e., $\exists y (\forall z (z \varepsilon y) \land y \varepsilon x)$, and $y \cup \{y\} \varepsilon x$ represents “$y \cup \{y\} \in x$,” which can be written in a similar manner.

Replacement axioms: $\forall x_1 \cdots \forall x_n \forall x \exists y \varphi(x, y, x_1, \ldots, x_n) \rightarrow \forall u \exists v \forall y \left(y \varepsilon v \leftrightarrow \exists x (\varphi(x, y, x_1, \ldots, x_n) \land x \varepsilon u) \right)$

Intuitively, this means that if for parameters x_1, \ldots, x_n, the formula $\varphi(x, y, x_1, \ldots, x_n)$ defines a map $x \mapsto y$, then the range of a set is again a set.
Axiom of choice: \(\forall x \left(\emptyset \not\in x \land \forall u \forall v \left(u \in x \land v \in x \land u \neq v \rightarrow u \cap v \approx \emptyset \right) \right) \rightarrow \exists y \forall w \left(w \in x \rightarrow \exists z^{=1} \left(z \in w \cap y \right) \right) \)

This states axiom of choice. As before, those underline represent abbreviations of first-order formula describing their respective intuitive meanings.

Remark 10.8 Assuming the consistency of ZFC, the following holds.

- ZFC + CH is consistent (Gödel 1940).
- ZFC + \(\neg \)CH is consistent (Cohen 1963).

That is, both CH and its negation cannot be proved from ZFC, provided that ZFC is consistent.

5 Skolem paradox

It is generally accepted that ZFC is consistent, although there is no way to prove it. In the following we are going to show an application of Löwenheim-Skolem theorem that yields a seemingly absurd result, called *Skolem* paradox.

Assuming its consistency, by Löwenheim-Skolem theorem, ZFC has a countable structure \(\mathcal{A} = (A, \varepsilon^A) \). By the infinity axiom, there is an element \(x \in A \) such that \(x \) is an infinite set. By power set axiom, \(2^x \in A \). Now, by Cantor’s theorem, we know that \(2^x \) is uncountable. However, since \(A \) is countable, the set of elements related to \(2^x \) (by relation \(\varepsilon \)) must be countable too (since they all must come from \(A \)). Does this mean that Cantor’s theorem and Löwenheim-Skolem theorem contradict each other? Or, that ZFC is inconsistent?