Lesson 9: Gödel’s completeness theorem

Theme: Consistent set, Henkin set and the equivalence between the notions of ⊢ and |=.

1 Consistent sets

Let L be a vocabulary, and let $X \subseteq \text{FO}[L]$. The set X is inconsistent, if there is a formula α such that $X \vdash \alpha$ and $X \vdash \neg \alpha$. By the contradiction rule, this also means that X is inconsistent if $X \vdash \beta$, for every formula β.

We say that X is consistent, if X is not inconsistent. It is maximally consistent, if it is consistent and for every set $Y \subseteq \text{FO}[L]$ and $Y \supseteq X$, Y is inconsistent.

2 Constants elimination

Let c be a constant symbol and z be a variable. For a formula α, we write αz to denote the formula obtained by replacing every constant symbol c in α by z. For a set X, we write $X z$ to denote the set $\{\alpha z | \alpha \in X\}$.

Lemma 9.1 Suppose $X \vdash_L \alpha$. Let c be a constant in L, and L' denote $L - \{c\}$. Then, there is a finite subset $X_0 \subseteq X$ and a variable $z /\notin \text{var}(X_0) \cup \text{var}(\alpha)$,

$$X_0 z \vdash_{L'} \alpha z.$$

Proof. (Sketch) Suppose $X \vdash_L \alpha$. By the finiteness theorem of \vdash, there is a finite set $X_0 \subseteq X$ such that $X_0 \vdash L \alpha$. Let $z /\notin \text{var}(X_0) \cup \text{var}(\alpha)$.

Claim 1 $X_0 z \vdash_{L'} \alpha z$.

The claim can be proved by induction on the length of the proof of $X_0 \vdash_L \alpha$. ■

Lemma 9.2 Suppose $X \vdash \alpha[c/x]$ and c does not appear in X and α. Then, $X \vdash \forall x \alpha$.

Proof. Suppose $X \vdash \alpha[c/x]$, where c does not appear in X and α.

By Lemma 9.1 there is a finite subset $X_0 \subseteq X$ such that $X_0 z \vdash \alpha[c/x] z$, where $z /\notin \text{var}(X_0) \cup \text{var}(\alpha[c/x])$.

Now, since c does not appear in X, $X_0 z = X_0$. So,

$$X_0 \vdash \alpha[c/x] z.$$

Moreover, c does not appear in α. So $\alpha[c/x] z = \alpha[z/x]$. Thus,

$$X_0 \vdash \alpha[z/x].$$

Since z does not appear in X_0 and α, by generalisation rule, we have $X_0 \vdash \forall x \alpha$. Lemma 9.2 follows immediately by monotonicity rule. ■

For a variable $x \in \text{VAR}$ and $\alpha \in \text{FO}[L]$, we define a “new” constant $c_{x, \alpha} /\notin L$. We define the following formula $\alpha^x \in \text{FO}[L \cup \{c_{x, \alpha}\}]$.

$$\alpha^x := \neg \forall x \alpha \land \alpha[c_{x, \alpha}/x]$$

*Similar material can be obtained from Section 3.2 in the textbook A Concise Introduction to Mathematical Logic (3rd ed.) by Wolfgang Rautenberg.
Lemma 9.3 Let L be a vocabulary. Define the set Γ_L of formulas as follows:

$$\Gamma_L := \{-\alpha^x \mid x \in \text{VAR and } \alpha \in \text{FO}[L]\}$$

If a set X is consistent, then so is $X \cup \Gamma_L$.

Proof. Let X be a consistent set. Suppose to the contrary that $X \cup \Gamma_L$ is inconsistent. That is, there is φ such that

$$X \cup \Gamma_L \vdash \varphi \quad \text{and} \quad X \cup \Gamma_L \vdash \neg \varphi.$$

Thus, $X \cup \Gamma_L \vdash F$, where F denotes $\varphi \land \neg \varphi$. By finiteness theorem, there is a finite subset $X_0 \subseteq X$ such that

$$X_0, -\alpha_1^{x_1}, \ldots, -\alpha_{n-1}^{x_{n-1}}, -\alpha_n^{x_n} \vdash F.$$

(1)

We can assume that n is minimal in the sense that $X_0, -\alpha_1^{x_1}, \ldots, -\alpha_i^{x_i} \not\vdash F$, for every $i < n$. By Contradiction Rule on (1),

$$X_0, -\alpha_1^{x_1}, \ldots, -\alpha_{n-1}^{x_{n-1}}, -\alpha_n^{x_n} \vdash \alpha_n^{x_n}.$$

(2)

By Initial Rule and Monotonicity Rule,

$$X_0, -\alpha_1^{x_1}, \ldots, -\alpha_{n-1}^{x_{n-1}}, \alpha_n^{x_n} \vdash \alpha_n^{x_n}.$$

(3)

By Negation Rule on (2) and (3),

$$X_0, -\alpha_1^{x_1}, \ldots, -\alpha_{n-1}^{x_{n-1}} \vdash \neg \forall x \alpha.$$

(4)

Let us denote by $x := x_n$, $\alpha := \alpha_n$ and $c := c_{x, \alpha}$. Thus,

$$X_0, -\alpha_1^{x_1}, \ldots, -\alpha_{n-1}^{x_{n-1}} \vdash \neg \forall x \alpha \land \alpha[c_{x, \alpha}/x].$$

(5)

By And Split Rule on (5)

$$X_0, -\alpha_1^{x_1}, \ldots, -\alpha_{n-1}^{x_{n-1}} \vdash \neg \forall x \alpha$$

(6)

$$X_0, -\alpha_1^{x_1}, \ldots, -\alpha_{n-1}^{x_{n-1}} \vdash \alpha[c_{x, \alpha}/x].$$

(7)

Since $c_{x, \alpha}$ does not appear in X_0 and in each of $\alpha_i^{x_i}$, by Lemma 9.2 on (7), we have

$$X_0, -\alpha_1^{x_1}, \ldots, -\alpha_{n-1}^{x_{n-1}} \vdash \forall x \alpha.$$

(8)

But (6) and (8) imply that $X_0, -\alpha_1^{x_1}, \ldots, -\alpha_{n-1}^{x_{n-1}}$ is inconsistent, which contradicts the assumption that n is minimal.

\[\text{Note that } \Gamma_L \text{ is a set of formulas over the vocabulary } L \cup \{c_{x, \alpha} \mid \alpha \in \text{FO}[L], x \in \text{VAR}\}.\]
3 Henkin sets

Definition 9.4 A set $X \subseteq \text{FO}[L]$ is called a Henkin set, if it satisfies the following properties.

(H1) $X \vdash \neg \alpha$ if and only if $X \not\models \alpha$. Or, equivalently, $X \vdash \alpha$ if and only if $X \not\models \neg \alpha$.

(H2) $X \vdash \forall x \alpha$ if and only if $X \vdash \alpha[c/x]$ for every constant $c \in L$.

Proposition 9.5 If X is a Henkin set over vocabulary L, then for each L-term t, there is a constant $c \in L$ such that $X \vdash t \approx c$.

Proof. Let X be a Henkin set over vocabulary L. By Example 8.10, we have $\vdash \neg \forall x t \not\approx x$, when $x \notin \text{var}(t)$. By Monotonicity Rule, $X \vdash \neg \forall x t \not\approx x$. Since X is Henkin, by (H1), we have $X \not\models \forall x t \not\approx x$.

By (H2), for some constant c,

$X \not\models t \not\approx c$.

By (H1),

$X \vdash t \approx c$.

This completes our proof of Proposition 9.5. ■

Lemma 9.6 For every consistent set $X \subseteq \text{FO}[L]$, there is a Henkin set $Y \supseteq X$, where $Y \subseteq \text{FO}[L \cup C]$, for some set C of “new” constants not in L.

Proof. Let $X \subseteq \text{FO}[L]$ be a consistent set. For each integer $i \geq 0$, we define the sets Γ_i, Δ_i, L_i and C_i as follows.

$\Delta_0 := X \quad L_0 := L \quad C_0 := \emptyset \quad \Gamma_0 := \emptyset$

For each $i > 0$,

$C_i := \{c_{x,\alpha} \mid x \in \text{VAR} \text{ and } \alpha \in \text{FO}[L_{i-1}]\}$

$L_i := L_{i-1} \cup C_i$

$\Gamma_i := \{\neg \alpha^x \mid \alpha^x := \neg \forall x \alpha \land \alpha[c_{x,\alpha}/x] \text{ where } \alpha \in \text{FO}[L_{i-1}] \text{ and } c_{x,\alpha} \in C_i\}$

$\Delta_i := \Delta_{i-1} \cup \Gamma_i$

Now, let $\Delta := \bigcup_{i>0} \Delta_i$ and $L' := \bigcup_{i>0} L_i$.

Consider the poset (\mathcal{F}, \subseteq), where

$\mathcal{F} := \{Z \mid \Delta \subseteq Z \subseteq \text{FO}[L'] \text{ and } Z \text{ is consistent}\}$.

Claim 2 Let K be a chain in (\mathcal{F}, \subseteq). Then, $\bigcup K$ is consistent.

Proof. (of Claim 2) Proceeds like the one in propositional calculus. ■

By Zorn’s lemma, there is a maximal consistent set $Y \in \mathcal{F}$. We will now show that that Y is Henkin.
Claim 3 Y satisfies (H1), i.e., $Y \vdash \neg \alpha$ if and only if $Y \nvdash \alpha$.

Proof. (of Claim 3) For the “only if” direction, suppose $Y \vdash \neg \alpha$. Since Y is consistent, $Y \nvdash \alpha$.

For the “if” direction, suppose $Y \nvdash \alpha$, which means that $\alpha \notin Y$. Since Y is maximal, $Y \cup \{\alpha\}$ is not consistent. So,

$$Y, \alpha \vdash \neg \alpha.$$

By Initial Rule,

$$Y, \neg \alpha \vdash \neg \alpha.$$

By Negation Rule,

$$Y \vdash \neg \alpha.$$

This completes our proof of Claim 3. $lacksquare$

Claim 4 Y satisfies (H2), i.e., $Y \vdash \forall x \alpha$ if and only if $Y \vdash \alpha[c/x]$ for every constant $c \in L'$.

Proof. (of Claim 4) For the “only if” direction, suppose $Y \vdash \forall x \alpha$. Let $c \in L'$. Now $[c/x]$ is collision-free in α. By Specialisation Rule, $Y \vdash \alpha[c/x]$.

For the “if” direction, suppose $Y \vdash \alpha[c/x]$ for every constant $c \in L'$. Let $\alpha \in \text{FO}[L_\alpha]$. So, in particular for $c \in C_n$,

$$Y \vdash \alpha[c/x]. \quad (9)$$

Now, suppose to the contrary that $Y \nvdash \forall x \alpha$. By (H1),

$$Y \vdash \neg \forall x \alpha. \quad (10)$$

By And Combine Rule on (9) and (10),

$$Y \vdash \neg \forall x \alpha \land \alpha[c/x] \quad (11)$$

Note that the right side of (11) is simply α^x. So, $Y \vdash \alpha^x$.

However, $\neg \alpha^x \in Y$. So, $Y \vdash \neg \alpha^x$, which means Y is inconsistent. This contradicts the fact that $Y \in \mathcal{F}$, which means that Y is consistent. Therefore, $Y \vdash \forall x \alpha$, and this completes the proof of Claim 4. $lacksquare$

Claims 3 and 4 state that Y is Henkin, and this completes our proof of Lemma 9.6. $lacksquare$

Lemma 9.7 Every Henkin set is satisfiable.

Proof. This will be proved in the tutorial. $lacksquare$

4 The completeness theorem for FO

Theorem 9.8 (Gödel’s completeness theorem) $X \models \alpha$ if and only if $X \vdash \alpha$.

Proof. The “if” direction is the soundness theorem. For the “only if” direction, we show if $X \nvdash \alpha$, then $X \not\models \alpha$. Suppose $X \nvdash \alpha$. Then, $X \cup \{\neg \alpha\}$ is consistent. By Lemmas 9.6 and 9.7, there is a Henkin set $Y \supseteq X \cup \{\neg \alpha\}$ and Y is satisfiable. This means $X \cup \{\neg \alpha\}$ is satisfiable, and therefore, $X \not\models \alpha$. $lacksquare$

4Lemma 4.2 can be easily proved for a set X of first-order formulas.
Exercises

In questions (1)-(8) below we are going to show that every Henkin set is satisfiable. Let \(Y \) be a Henkin set and \(C \) be the set of all the constants that appear in \(Y \). We associate each constant \(c \in C \) with an element \(a_c \). Different constants \(c \neq c' \) are associated with different elements \(a_c \neq a_{c'} \). Consider the set \(U \).

\[
U := \{ a_c \mid c \in C \}
\]

Define a relation \(\sim \) on \(U \) as follows.

\[
a_c \sim a_{c'} \text{ if and only if } Y \vdash c \approx c'
\]

(1) Prove that \(\sim \) is an equivalence relation on \(U \). (Note this is not a trivial question.)

Let \([a_c] \) denote the equivalence class of \(a_c \) w.r.t. \(\sim \). The structure \(A = (A, R_1, \ldots, f_1, \ldots, c_1, \ldots) \) is defined as follows.

- \(A = \{ [a_c] \mid a_c \in U \} \).
- \(c_i = [a_{c_i}] \).
- \(R_i([a_{c_1}], \ldots, [a_{c_n}]) \) if and only if \(Y \vdash R(c_1, \ldots, c_n) \).
- \(f_i([a_{c_1}], \ldots, [a_{c_n}]) = [a_c] \), if \(Y \vdash f_i(c_1, \ldots, c_n) \approx c \).

(2) Prove that the definition of \(R_i \) is well defined.

That is, if \(([a_{c_1}], \ldots, [a_{c_n}]) = ([a_{d_1}], \ldots, [a_{d_n}]) \), then,

\[
Y \vdash R(c_1, \ldots, c_n) \text{ if and only if } Y \vdash R(d_1, \ldots, d_n)
\]

(3) Prove that the definition of \(f_i \) is well defined.

That is,

- for every \(c_1, \ldots, c_n \in C \), there is \(c \) such that \(Y \vdash f_i(c_1, \ldots, c_n) \approx c \), and
- if \(([a_{c_1}], \ldots, [a_{c_n}]) = ([a_{d_1}], \ldots, [a_{d_n}]) \), then \(f_i([a_{c_1}], \ldots, [a_{c_n}]) = f_i([a_{d_1}], \ldots, [a_{d_n}]) \).

Consider the following valuation \(\text{val} : \text{VAR} \to A \), where \(\text{val}(x) = [a_c] \), where \(Y \vdash x \approx c \).

(4) Prove that \(\text{val} \) is well defined.

(5) Prove that for every term \(t \), if \(Y \vdash t \approx c \), then \(t^A[\text{val}] = [a_c] \).

Next, we will show that \(Y \) is satisfiable, i.e., \((A, \text{val}) \models \alpha \), for every \(\alpha \in Y \).

(6) Prove that \((A, \text{val}) \models s \approx t \), for every atomic formula \(s \approx t \in Y \).

(7) Prove that \((A, \text{val}) \models R(s_1, \ldots, s_n) \), for every atomic formula \(R(s_1, \ldots, s_n) \in Y \).

(8) Prove that \((A, \text{val}) \models \alpha \), for every \(\alpha \in Y \), and hence, \(Y \) is satisfiable.

Compactness theorem states that \(X \) is satisfiable if and only if \(X \) is finitely satisfiable.

(9) Use the completeness theorem to prove the compactness theorem for \(\text{FO} \).