Lesson 4: Completeness of propositional calculus

Theme: The equivalence between provability and logical consequences (completeness of propositional calculus).

Definition 4.1 A set X is **inconsistent**, if there is α such that $X \vdash \alpha$ and $X \vdash \neg \alpha$. Otherwise, we say that X is **consistent**.

Lemma 4.2 For every set X of formulas and for every formula α, the following holds.

(a) $X \vdash \alpha$ if and only if $X \cup \{\neg \alpha\}$ is inconsistent.
(b) $X \vdash \neg \alpha$ if and only if $X \cup \{\alpha\}$ is inconsistent.

Definition 4.3 A set X is **maximally consistent**, if it is consistent and for every $Y \supseteq X$, Y is inconsistent.

Lemma 4.4 Every consistent set X can be extended to a maximally consistent set. That is, for every consistent set X, there is a maximally consistent set Y such that $Y \supseteq X$.

Lemma 4.5 A maximally consistent set X has the following property: For every α,

$$X \vdash \neg \alpha \iff X \not\models \alpha.$$

Lemma 4.6 A maximally consistent set X is satisfiable.

Proof. (Sketch) Define the following assignment w, where for every atomic proposition p:

$$w(p) := \begin{cases}
T, & \text{if } X \vdash p \\
F, & \text{if } X \vdash \neg p
\end{cases}$$

We have to show that for every $\alpha \in X$, $w(\alpha) = T$. It is sufficient to show the following.

$$X \vdash \alpha \iff w(\alpha) = T.$$

The proof is by induction on α. □

Theorem 4.7 (Completeness of propositional calculus) $X \vdash \alpha$ if and only if $X \models \alpha$.

Proof. The “only if” direction is straightforward. We prove the “if” direction by showing that $X \not\vdash \alpha$ implies $X \not\models \alpha$.

Suppose $X \not\vdash \alpha$. This means that $X \cup \{\neg \alpha\}$ is consistent. By Lemma 4.4, we can extend it to a maximally consistent set Y. Lemma 4.6 implies Y is satisfiable, and hence, $X \cup \{\neg \alpha\}$ is also satisfiable, which further implies that $X \not\models \alpha$ (why?). This completes our proof. □

There are six rules in our proof system. Where do we use each of them in our proof of completeness theorem?