Lesson 1: Preliminaries

Theme: Review of some basic concepts.

Linear algebra. Let \(\bar{u}_1, \ldots, \bar{u}_n \in \mathbb{R}^m \) be vectors in \(\mathbb{R}^m \). They are linearly dependent, if there are \(\alpha_1, \ldots, \alpha_n \), not all of them are zero, such that
\[
\alpha_1 \bar{u}_1 + \cdots + \alpha_n \bar{u}_n = 0
\]
They are called linearly independent, if there are no such \(\alpha_1, \ldots, \alpha_n \).

The spanning space of a set of vectors \(\bar{u}_1, \ldots, \bar{u}_n \) is the vector space:
\[
\text{span}(\bar{u}_1, \ldots, \bar{u}_n) := \{ \alpha_1 \bar{u}_1 + \alpha_2 \bar{u}_2 + \cdots + \alpha_n \bar{u}_n \mid \alpha_1, \ldots, \alpha_n \in \mathbb{R} \}.
\]
The dimension of a vector space \(V \) is:
\[
\dim(V) := \max\{ k \mid \text{there are } k \text{ linearly independent vectors in } V \}
\]
Let \(A \) be the following \((m \times m)\)-matrix over \(\mathbb{R} \):
\[
A = \begin{bmatrix}
a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1,m} \\
a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & a_{m,3} & \cdots & a_{m,m}
\end{bmatrix}
\]
The column vectors of \(A \) are the vectors:
\[
\begin{bmatrix}
a_{1,1} \\
a_{2,1} \\
\vdots \\
a_{m,1}
\end{bmatrix}, \quad
\begin{bmatrix}
a_{1,2} \\
a_{2,2} \\
\vdots \\
a_{m,2}
\end{bmatrix}, \quad \ldots, \quad
\begin{bmatrix}
a_{1,m} \\
a_{2,m} \\
\vdots \\
a_{m,m}
\end{bmatrix}
\]
The row vectors of \(A \) are the vectors:
\[
\begin{bmatrix}
a_{1,1} \\
a_{1,2} \\
\vdots \\
a_{1,m}
\end{bmatrix}, \quad
\begin{bmatrix}
a_{2,1} \\
a_{2,2} \\
\vdots \\
a_{2,m}
\end{bmatrix}, \quad \ldots, \quad
\begin{bmatrix}
a_{m,1} \\
a_{m,2} \\
\vdots \\
a_{m,m}
\end{bmatrix}
\]
The column rank of \(A \) is the dimension of the span of its column vectors, while the row rank of \(A \) is the dimension of the span of its row vectors. It is known that (for square matrices) column rank equals row rank, and we will denote it by \(\text{rank}(A) \).

Probability space. A probability space is a system \((\Omega, \text{Pr}) \), where \(\Omega \) is a set called sample space, and \(\text{Pr} : 2^\Omega \rightarrow \mathbb{R} \) is a probability function satisfying the following conditions.

- \(\text{Pr}[\Omega] = 1 \),
- \(0 \leq \text{Pr}[E] \leq 1 \), for every \(E \in 2^\Omega \),
for any countably infinite sequence of pairwise disjoint sets \(E_1, E_2, \ldots \),

\[
\Pr\left[\bigcup_{i \geq 1} E_i \right] = \sum_{i \geq 1} \Pr[E_i]
\]

The sets in \(2^\Omega \) are usually called events, and the singletons \(\{ e \} \) elementary events.

We will only deal with discrete probability space, i.e., when \(\Omega \) is a countable set. Without loss of generality, we can assume that \(\Pr[e] > 0 \), for every \(e \in \Omega \).

We say that two events \(E \) and \(F \) are independent, if \(\Pr[E \cap F] = \Pr[E] \cdot \Pr[F] \). Likewise, a collection of events \(E_1, \ldots, E_k \) are independent, if for every \(I \subseteq \{1, \ldots, k\} \),

\[
\Pr\left[\bigcap_{i \in I} E_i \right] = \prod_{i \in I} \Pr[E_i]
\]

The conditional probability that event \(E \) occurs given that event \(F \) occurs is defined as:

\[
\Pr[E \mid F] := \frac{\Pr[E \cap F]}{\Pr[F]}
\]

A (discrete) random variable is a function \(X : \Omega \to \mathbb{R} \). A random variable \(X \) is called a 0-1 random variable, if \(\text{range}(X) = \{0, 1\} \).

The probability of the event “\(X = a \)” is defined as:

\[
\Pr[X = a] := \sum_{e \in \Omega \text{ such that } X(e) = a} \Pr[e]
\]

The probabilities \(\Pr[X \oplus a] \), where \(\oplus \in \{\leq, \geq, <, >, \neq\} \) can be defined in a similar manner. We say that a random variable \(X \) is uniformly distributed on \(\text{range}(X) \), if \(\Pr[X = a] = \Pr[X = b] \), for every \(a, b \in \text{range}(X) \).

Two random variables \(X, Y \) are independent, if \(\Pr[X = x \cap Y = y] = \Pr[X = x] \cdot \Pr[Y = y] \), for every possible values \(x \) and \(y \). Likewise, a collection of random variables \(X_1, \ldots, X_k \) are independent, if for every \(I \subseteq \{1, \ldots, k\} \), for every \(i \in I \), for every value \(x_i \),

\[
\Pr\left[\bigcap_{i \in I} X_i = x_i \right] = \prod_{i \in I} \Pr[X_i = x_i]
\]

The expectation of a random variable \(X \) is defined as \(\mathsf{E}[X] := \sum_i i \cdot \Pr[X = i] \). It is known that for every two random variables \(X \) and \(Y \), and for every constant \(c \),

- \(\mathsf{E}[X + Y] = \mathsf{E}[X] + \mathsf{E}[Y] \),
- \(\mathsf{E}[cX] = c\mathsf{E}[X] \).

A pair \((X, Y)\) of random variables can be viewed as a random variable \(Z \) with an appropriate “pairing function” \(\langle \cdot, \cdot \rangle \), where \(\Pr[Z = c] = \Pr[\langle X = a, Y = b \rangle] \), where \(\langle a, b \rangle = c \). For convenience, we will simply write \((X, Y)\) to denote a random variable \(Z \) obtained in this way.

Below we have some useful bounds that we will often use in this course.

Theorem 1.1 (Markov’s inequality) Let \(X \) be a non-negative random variables. Then,

\[
\Pr[X \geq \alpha] \leq \frac{\mathsf{E}[X]}{\alpha}
\]

Theorem 1.2 (Chernoff’s inequality) Let \(X_1, \ldots, X_n \) be independent 0-1 random variables with \(\Pr[X_i = 1] = p \). Let \(X = X_1 + \cdots + X_n \) and let \(\mu = \mathsf{E}[X] \). Then, for every \(0 < \delta < 1 \),

\[
\Pr[|X - \mu| \geq \delta \mu] \leq 2e^{-\mu \delta^2/3}.
\]