Sample solution for homework 3

Question 1.
- On input ϵ:
 $q_0 \vdash q_{\text{rej}}$.
- On input 011:
 $q_0011 \vdash <p_011 \vdash <0p_11 \vdash <0p_11 \vdash 01s1 \vdash <0s10 \vdash <s000 \vdash t < 100 \vdash q_{\text{acc}} < 100$.
- On input 100:
 $q_0100 \vdash <p_100 \vdash <1p_00 \vdash <10p_0 \vdash <10q_{\text{rej}}0$.
- On input 111:
 $q_0111 \vdash <p_111 \vdash <1p_11 \vdash <1p_11 \vdash <11s1 \vdash <1s10 \vdash <s100 \vdash s < 000$
 $\vdash <r_10000 \vdash <1r_0000 \vdash <10r_00 \vdash <10r_00 \vdash <1r_0000 \vdash <t1000 \vdash t < 1000$
 $\vdash q_{\text{acc}} < 1000$.

Question 2.
(a) If M accepts w, then the TM $K_{M,w}$ ignores its input u, and ACCEPTS immediately. In other words, it accepts everything. Therefore, $L(K_{M,w}) = \Sigma^*$.
(b) If M rejects w, then the TM $K_{M,w}$ checks whether its input u is of the form 0^n1^n. If it is of the form 0^n1^n, then $K_{M,w}$ ACCEPTS. Otherwise, it REJECTS. Therefore, when M rejects w, $L(K_{M,w}) = \{0^n1^n \mid n \geq 0\}$.
(c) If M does not halt on w, then the TM $K_{M,w}$ does not halt regardless of its input u. Therefore, $L(K_{M,w}) = \emptyset$.
(d) Note that there are three possibilities for $L(K_{M,w})$: Σ^*, $\{0^n1^n \mid n \geq 0\}$ and \emptyset. The first and the third are regular, but the second is not.

The following sentence is not true:

$\lfloor M \rfloor \mid w \in \text{HALT}$ if and only if $\lfloor K_{M,w} \rfloor \in L_5$

The part "if $\lfloor K_{M,w} \rfloor \in L_5$, then $\lfloor M \rfloor \mid w \in \text{HALT}" is not true, because from (c) we know that $L(K_{M,w}) = \emptyset$, which is regular, but M does not accept w, i.e., $\lfloor M \rfloor \mid w \notin \text{HALT}$.

Note that the part "if $\lfloor M \rfloor \mid w \in \text{HALT}$, then $\lfloor K_{M,w} \rfloor \in L_5" is true, because from (a) we know that when M accepts w, $L(K_{M,w}) = \Sigma^*$, which is regular.

Question 3. We will show that $\text{HALT} \leq_m L_\infty$. Consider the following reduction.

INPUT: $\lfloor M \rfloor \mid w$.
- Construct a TM $K_{M,w}$ that works as follows.
 INPUT: $u \in \Sigma^*$.
 - Simulate M on w.
 - If M accepts w, ACCEPT.
 - If M rejects w, REJECT.
• Output $|\mathcal{K}_{M,w}|$.

We analyse the behavior of $\mathcal{K}_{M,w}$:

• If \mathcal{M} accepts w, the TM $\mathcal{K}_{M,w}$ ignores its input u, and ACCEPTS immediately. That is, it accepts every input word. Therefore, $L(\mathcal{K}_{M,w}) = \Sigma^*$, which is infinite.

• If \mathcal{M} rejects w, the TM $\mathcal{K}_{M,w}$ ignores its input u, and REJECTS immediately. That is, it rejects every input word. Therefore, $L(\mathcal{K}_{M,w}) = \emptyset$, which is finite.

• If \mathcal{M} does not halt on w, the TM $\mathcal{K}_{M,w}$ does not halt regardless of its input u. Therefore, $L(\mathcal{K}_{M,w}) = \emptyset$, which is finite.

In other words, $|\mathcal{M}| \notin \text{HALT}$ if and only if $|\mathcal{K}_{M,w}| \in L_\infty$.

Question 4. We show a reduction from CFL-Universality.

On input CFG G, do the following.

• Construct a DFA A that accepts Σ^*, i.e., A has only one state which is accepting.

• Output G and A.

Now, $L(G) = \Sigma^*$ if and only if $L(G) = L(A)$.

Thus, if there is an algorithm/TM for our problem, (i.e., to decide whether $L(G) = L(A)$), then there is an algorithm/TM for the problem CFL-Universality. Since CFL-Universality is undecidable, so is our problem.

Question 5. We first note that NP are closed under union and intersection. That is, if $K_1, K_2 \in \text{NP}$, then $K_1 \cup K_2 \in \text{NP}$ and $K_1 \cap K_2 \in \text{NP}$. Indeed, suppose \mathcal{M}_1 and \mathcal{M}_2 are the NTMs for K_1 and K_2, respectively. Let \mathcal{M} be a 2-tape NTM that on input u, run \mathcal{M}_1 on u on tape 1, and run \mathcal{M}_2 on u on tape 2.

• For language $K_1 \cup K_2$, \mathcal{M} ACCEPTS if and only if at least one of \mathcal{M}_1 and \mathcal{M}_2 ACCEPT.

• For language $K_1 \cap K_2$, \mathcal{M} ACCEPTS if and only if both \mathcal{M}_1 and \mathcal{M}_2 ACCEPT.

Now, back to our question, suppose $L_1, L_2 \in \text{coNP}$. We will first prove that $L_1 \cup L_2 \in \text{coNP}$. Suppose $L_1, L_2 \in \text{coNP}$. By definition, $\Sigma^* - L_1$ and $\Sigma^* - L_2$ are in NP. By the following identity:

$$\Sigma^* - (L_1 \cup L_2) = (\Sigma^* - L_1) \cap (\Sigma^* - L_2)$$

Since both $\Sigma^* - L_1$ and $\Sigma^* - L_2$ are in NP, the intersection is also in NP. Thus, $L_1 \cup L_2$ is in coNP.

The proof for $L_1 \cap L_2 \in \text{coNP}$ is similar, except that we use the following identity:

$$\Sigma^* - (L_1 \cap L_2) = (\Sigma^* - L_1) \cup (\Sigma^* - L_2)$$

Question 6. Suppose $\text{SAT} \in \text{coNP}$. By definition of coNP, $\Sigma^* - \text{SAT} \in \text{NP}$. Let \mathcal{M}_0 be the polynomial time NTM that decides $\Sigma^* - \text{SAT}$.

Now, we will prove $\text{NP} \subseteq \text{coNP}$. Let $L \in \text{NP}$. Let \mathcal{M} be an NTM for language L that runs in polynomial time.

To show that $L \in \text{coNP}$, we have to show that $\Sigma^* - L \in \text{NP}$.
Recall that SAT is \(\text{NP} \)-hard, so \(L \leq_p \text{SAT} \). That is, there is a polynomial time computable function \(F \) such that

\[
\text{if and only if } F(w) \in \text{SAT}
\]

Equivalently, \(w \notin L \) if and only if \(F(w) \notin \text{SAT} \), i.e., \(F(w) \in \Sigma^* - \text{SAT} \).

The following TM accepts \(\Sigma^* - L \) in polynomial time. On input \(w \):

1. Compute \(F(w) \).
2. Run \(M \) on \(F(w) \).
3. Accept, when \(M \) accepts \(F(w) \), i.e., when we reach the accepting state of \(M \).

Note that \(M \) is NTM, so our algorithm is also NTM.

Complexity analysis: Since \(F \) is polynomial time computable, the first step takes polynomial time. Now, by our assumption \(M \) is polynomial time NTM that accepts \(\Sigma^* - \text{SAT} \). So, overall our NTM above runs in polynomial time.

Proof of correctness: By definition, \(w \in \Sigma^* - L \) if and only if \(F(w) \in \Sigma^* - \text{SAT} \). Since \(M_0 \) accepts \(\Sigma^* - \text{SAT} \), we have that \(w \in \Sigma^* - L \) if and only if \(M_0 \) accepts \(F(w) \). Thus, our NTM above accepts \(\Sigma^* - L \).