Sample solution for homework 2

Question 1. It can be proved that for every word w, the following holds. $w \in L(G)$ if and only if in every prefix of w, the number of a’s is greater than or equal to the number of b’s.

In this case, the words in (a) and (c) do not belong to $L(G)$, whereas those in (b) and (d) do. The derivation trees for (b) and (d) are omitted here.

Question 2. In the following X, S are variables and S is the start variable.

(a) $L_1 = \{a^m b^n \mid m > n\}$ is generated by the following grammar:

$$
S \rightarrow aSb \mid aS \mid a
$$

(b) $L_2 = \{w^R \mid w \in \{a,b\}^*\}$ is generated by the following grammar:

$$
S \rightarrow X$

$$
X \rightarrow aXa \mid bXb \mid$

(c) $L_3 = \{w_1^R \cdot w_2^R \cdot \ldots \cdot w_k^R \mid \text{each } w_i \in \{a,b\}^* \text{ for some } k \geq 1\}$ is generated by the following grammar:

$$
S \rightarrow SX^R \mid X$

$$
X \rightarrow aXa \mid bXb \mid$

(d) L_4 is the complement of the language $\{a^m b^n \mid m \geq n \geq 0\}$ over the alphabet $\{a,b\}$. Note that $w \notin L_4$ if and only if one of the following holds.

- $w = a^m b^n$, where $m < n$.
- There is a that appears after b.

Such words can be generated by the following grammar:

$$
S \rightarrow X \mid YbaY$

$$
X \rightarrow aXb \mid Xb \mid b$

$$
Y \rightarrow aY \mid bY \mid \epsilon$

X generates the first case, whereas $YbaY$ generates the words in the second case.

Question 3.

(a) (Sketch) Suppose to the contrary that there is CFG $G = (\Sigma, V, R, S)$ that generates L_5.

Consider $w = a^n b^n$, where $n > 2M^{|R|} + 1$. By pumping lemma, the word ww can be partitioned into sx_1yzt such that $y < M^{|R|} + 1$, $|x| + |z| > 0$ and $sx_1yzt \in L(G)$, for every $i \geq 0$.

For x and z to be “pumped” for every $i \geq 0$ and still belong to L_5, x must be in the first w, and z in the second w. Moreover, the position of x in the first w must be the same as the position of z in w. Since $n > 2M^{|R|} + 1$, this implies that $|y| > M^{|R|} + 1$, which contradicts the condition in pumping lemma. Thus, there is no such G that generates L_5.

[1]
(b) Suppose to the contrary that there is CFG $G = \langle \Sigma, V, R, S \rangle$ that generates L_6.

Consider a^n, where n is a prime number bigger than $M^{R} + 1$. By pumping lemma, a^n can be partitioned into $sxyzt$ such that $|x| + |z| > 0$ and $sx^iyz^it \in L(G)$, for every $i \geq 0$. If we pick $i = n + 1$, then:

$$
|sx^{n+1}yz^{n+1}| = |sx^nyz| + n(|x| + |z|)
= n + n(|x| + |z|)
= (n + 1)(|x| + |z|),
$$

which is not a prime and contradicts the assumption that G generates L_6.

Question 4 (2 points). For (a), if we take $L = \{a^nb^n \mid n \geq 0\}$, which is CFL, and $K = \Sigma^*$, which is regular, then $L \cap K = L$ which has been shown to be not regular.

Similarly, for (b), if we take $L = \{a^nb^n \mid n \geq 0\}$, which is CFL, and $K = \emptyset$, which is regular, then $L \cup K = L$ which has been shown to be not regular.

Question 5 (2 points). As before, we simply write \sim to denote \sim_L.

Now consider $L = \{a^nb^n \mid n \geq 0\}$, which is CFL. Note that if $m \neq n$, we have: $a^m \not\sim a^n$. This is because $a^mb^m \in L$ but $a^ma^n \notin L_0$ (due to the fact that $m \neq n$).

Therefore, we have infinitely many words a, a^2, a^3, \ldots where each of them belongs to different equivalent classes of \sim. Thus, the index of a CFL may not necessarily be finite.