Sample solution for midterm exam

In the following, the alphabet is always $\Sigma = \{a, b\}$.

Question 1.

(a) $L_1 = \{a^{2n} \mid n \geq 1\}$ is defined by the regex: $aa(aa)^*$.

(b) $L_2 = \{w \mid$ every a in w is followed immediately by $b\}$ is accepted by the following DFA:

(c) $L_3 = \{w \mid w$ contains three consecutive a’s$\}$ is defined by the regex: $\Sigma^*aaa\Sigma^*$.

Alternatively, one can also construct the following DFA:

(d) $L_4 = \{w \mid w$ does not contain three consecutive a’s$\}$ is accepted by the complement of the DFA in (c):

Question 2. Abusing the notation, for two regex e_1 and e_2, we write $e_1 = e_2$ to denote $L(e_1) = L(e_2)$. Likewise, $e_1 \subseteq e_2$ denotes $L(e_1) \subseteq L(e_2)$ and $e_1 \neq e_2$ denotes $L(e_1) \neq L(e_2)$.

(a) $r^* \cup s^* \neq (r \cup s)^*$, when $r = a$ and $s = b$.

(b) $(r^* \cdot s^*)^* \neq (r \cdot s)^*$, when $r = a$ and $s = b$.

(c) $(r^* \cup s)^* = (r \cup s)^*$.

Proof: Note that $r \cup s \subseteq r^* \cup s$, hence, $(r \cup s)^* \subseteq (r^* \cup s)^*$. The other direction follows from the following.

$$ (r^* \cup s)^* \subseteq ((r \cup s)^* \cup s)^* = ((r \cup s)^*)^* = (r \cup s)^* $$

The inclusion comes from the fact that $r \subseteq r \cup s$, and hence, $r^* \subseteq (r \cup s)^*$. The first equality comes from the fact that $s \subseteq (r \cup s)^*$, and hence, $(r \cup s)^* \cup s = s$, whereas the second equality from the fact that $(A^*)^* = A^*$, for every set A.

1/3
(d) \((r^* \cup s^*)^* = (r \cup s)^* \).

Proof: Applying the equality in (c), we have the following.

\[
(r \cup s)^* = (r^* \cup s^*)^* = (r^* \cup s^*)^*.
\]

Question 3. In the following, capital letters \(X, S \) are variables and \(S \) is always the start variable.

(a) \(K_1 = \{ a^n b^n \mid n \geq 1 \} \) is generated by the following grammar:

\[
S \to aSb \mid ab
\]

(b) \(K_2 = \{ a^n x b^n \mid x \in \Sigma^* \text{ and } n \geq 1 \} \) is generated by the following grammar:

\[
\begin{align*}
S & \to aSb \mid X \\
X & \to aX \mid bX \mid \epsilon
\end{align*}
\]

(c) \(K_3 = \{ a^n b^n a^m b^m \mid n, m \geq 1 \} \) is generated by the following grammar:

\[
\begin{align*}
S & \to XX \\
X & \to aXb \mid ab
\end{align*}
\]

(d) \(K_4 = \{ a^n b^m a^m b^n \mid m, n \geq 1 \} \) is generated by the following grammar:

\[
\begin{align*}
S & \to aSb \mid X \\
X & \to bXa \mid ba
\end{align*}
\]

Question 4. Let \(G = \langle \Sigma, V, R, S \rangle \) be a left-linear grammar. Construct the following NFA \(A = \langle \Sigma, Q, q_0, F, \delta \rangle \), where the set of states \(Q \) is \(V \cup \{ q_f \} \), the initial state \(q_0 \) is \(S \), the set of final states is \(F = \{ q_f \} \), and the set of transitions \(\delta \) is as follows.

- For every rule \(A \to cB \) in \(R \), we have a transition \((A, c, B) \) in \(\delta \).
- For every rule \(A \to c \) in \(R \), we have a transition \((A, c, q_f) \) in \(\delta \).

To show that \(L(G) = L(A) \) holds, we can prove that for every word \(w \), for every variable \(A \), the following holds.

- \(S \Rightarrow^* wA \) if and only if there is a run of \(A \) from \(S \) to \(A \) on \(w \).
- \(S \Rightarrow^* w \) if and only if there is a run of \(A \) from \(S \) to \(q_f \) on \(w \).

The proof is by straightforward induction on the length of \(w \).

Question 5. Let \(A_1 = \langle \Sigma, Q_1, q_0, 1, F_1, \delta_1 \rangle \) be a PDA that accepts \(K \) and \(A_2 = \langle \Sigma, Q_2, q_0, 2, F_2, \delta_2 \rangle \) be an NFA that accepts \(L \).

Construct the following PDA \(A = \langle \Sigma, Q, q_0, F, \delta \rangle \) that simulates both \(A_1 \) and \(A_2 \) simultaneously.

- \(Q = Q_1 \times Q_2 \).
- \(q_0 = (q_{0,1}, q_{0,2}) \).
- \(F = F_1 \times F_2 \).
• δ is defined as follows.

 - For every $(p_1, x, \text{pop}(y) \rightarrow (q_1, \text{push}(z))) \in \delta_1$, where $x \neq \epsilon$ and $(p_2, x, q_2) \in \delta_2$, the following transition is in δ:
 $((p_1, p_2), x, \text{pop}(y) \rightarrow ((q_1, q_2), \text{push}(z)))$

 - For every $(p_1, x, \text{pop}(y) \rightarrow (q_1, \text{push}(z))) \in \delta_1$, where $x = \epsilon$, for every $p_2 \in Q_2$, the following transition is in δ:
 $((p_1, p_2), x, \text{pop}(y) \rightarrow ((q_1, p_2), \text{push}(z)))$

That \mathcal{A} accepts precisely $L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$ can be proved in a similar manner as the fact that regular languages are closed under intersection.