Lesson 9: Variants of Turing machines

Theme: Some variations of Turing machines.

1 Multi-tape Turing machines

A multi-tape Turing machine is a Turing machine that has a few tapes. On each tape, the Turing machine has one head. Formally, it is defined as follows. Let $k \geq 1$. A k-tape Turing machine is $M = \langle \Sigma, \Gamma, Q, q_0, q_{\text{acc}}, q_{\text{rej}}, \delta \rangle$, where δ is a function

$$\delta : (Q - \{q_{\text{acc}}, q_{\text{rej}}\}) \times \Gamma^k \rightarrow Q \times \Gamma \times \left\{ \text{Left, Right, Stay} \right\}^k$$

As before, an element of δ is written in the form:

$$(q, a_1, \ldots, a_k) \rightarrow (p, b_1, \ldots, b_k, \alpha_1, \ldots, \alpha_k).$$

Intuitively, it means that if the TM is in state q, and on each $i = 1, \ldots, k$, the head on tape i is reading a_i, then it enters state p, and for $i = 1, \ldots, k$, the head on tape i writes the symbol b_i and moves according to α_i.

A configuration of M is of the form (q, u_1, \ldots, u_k), where $q \in Q$ and each u_i is a string over $\Gamma \cup \{\bullet\}$ and the symbol \bullet appears exactly once in each u_i. The symbol \bullet is to denote the position of the head.

The input is always written in the first tape. All the other tapes are initially blank. Formally, the initial configuration on input word w is $(q_0, \bullet w, \bullet, \ldots, \bullet)$.

The notion of “one step computation” $C \vdash C'$ is defined similarly as in the standard Turing machine. Likewise, the conditions of acceptance and rejection are defined as when the Turing machines enter the accepting and rejecting states, respectively.

Theorem 9.1 For every language L, the following holds.

- If L is recognized by a k-tape TM M, then there is a single tape TM M' that recognizes L.
- If L is decided by a k-tape TM M, then there is a single tape TM M' that decides L.

2 Non-deterministic Turing machines

A non-deterministic Turing machine (NTM) $M = \langle \Sigma, \Gamma, Q, q_0, q_{\text{acc}}, q_{\text{rej}}, \delta \rangle$ is defined as the standard Turing machine, with the exception that δ is now a relation:

$$\delta \subseteq (Q - \{q_{\text{acc}}, q_{\text{rej}}\}) \times \Gamma \times Q \times \Gamma \times \left\{ \text{Left, Right, Stay} \right\}$$

As before, we write an element of δ is in the form:

$$(q, a) \rightarrow (p, b, \alpha).$$

The initial configuration of M on input word w is q_0w. For two configurations C, C', the notion of “one step computation” $C \vdash C'$ is defined similarly as in the standard Turing machine. A run of M on input w is a sequence:

$$C_0 \vdash C_1 \vdash \cdots ,$$

where C_0 is the initial configuration on w. A run is accepting/rejecting, if it ends up in an accepting/rejecting configurations, respectively. However, due to non-determinism, for each C there can be a few configuration C' such that $C \vdash C'$, thus, there can be many runs. Some are accepting, some are rejecting, and some other do not halt.
Important definitions.

- An NTM M accepts w, if there is an accepting run of M on w.
- An NTM M rejects w, if all runs of M on w are rejecting.
- A language L is decided by an NTM M, if
 - for every $w \in L$, M accepts w;
 - for every $w \notin L$, M rejects w.
- A language L is recognized by an NTM M, if
 - for every $w \in L$, M accepts w;
 - for every $w \notin L$, M does not accept w.

Recall that the standard TM is always deterministic. To avoid potential confusion, we will use the abbreviation DTM to mean deterministic Turing machine.

Theorem 9.2 For every language L, the following holds.

- If L is recognized by an NTM M, then there is a DTM M' that recognizes L.
- If L is decided by an NTM M, then there is a DTM M' that decides L.

The computation of an NTM M on input w can be pictured as a tree whose nodes are configurations of M defined as follows.

- The root node is the initial configuration q_0w.
- The children of a node C are all possible C' where $C \vdash C'$.

3 Some theorems on recognizable and decidable languages

Theorem 9.3

- If a language L is decidable, so is its complement $\Sigma^* - L$.
- If both a language L and its complement $\Sigma^* - L$ are recognizable, then L is decidable.

Theorem 9.4

- Recognizable languages are closed under union, intersection, concatenation and Kleene star.
- Decidable languages are closed under union, intersection, complement, concatenation and Kleene star.