Lesson 1: Preliminaries

Theme: Review of some basic facts from discrete mathematics.

1 Sets

- A set is a collection of things, which are called its members or elements.

 \[a \in X \] (read: \(a \) is in \(X \), or \(a \) belongs to \(X \)) means \(a \) is a member or an element of \(X \), whereas \(a \notin X \) means \(a \) is not a member of \(X \).

- An empty set is denoted by \(\emptyset \).

- \(X \) is a subset of \(Y \), denoted by \(X \subseteq Y \), if every element of \(X \) is also an element of \(Y \).

 \(X \) is a proper subset of \(Y \), denoted by \(X \subset Y \), if \(X \neq Y \) and \(X \subseteq Y \).

- For two sets \(X \) and \(Y \), we write \(X \cap Y \) and \(X \cup Y \) to denote their intersection and union, respectively.

- The cartesian product between two sets \(X \) and \(Y \) is the following.

 \[X \times Y := \{(a, b) \mid a \in X \text{ and } b \in Y\} \]

 We write \(X^n \) to denote \(X \times \cdots \times X \), where \(X \) appears \(n \) time.

2 Relations

- A relation \(R \) over two sets \(X, Y \) is a subset of \(X \times Y \).

- A binary relation \(R \) over \(X \) is a subset of \(X \times X \).

- An \(n \)-ary relation \(R \) over \(X \) is a subset of \(X^n \).

3 Functions

- A relation \(R \) over \(X, Y \) is a function or a mapping, if for every \(x \in X \), there is exactly one \(y \in Y \) such that \((x, y) \in R \).

 In this case, we will say \(R \) is a function from \(X \) to \(Y \), or \(R \) maps \(X \) to \(Y \). We denote it by \(R : X \to Y \).

- We will usually use the letters \(f, g, h, \ldots \) to represent functions. As usual, we write \(f(x) \) to denote the element \(y \) in which \((x, y) \in f \).

- A function \(f : X \to Y \) is an injective function, if for every \(y \in Y \), there is at most one \(x \in X \) such that \(f(x) = y \). An injective functions is also called an injection.

- A function \(f : X \to Y \) is a surjective function, if for every \(y \in Y \), there is at least one \(x \in X \) such that \(f(x) = y \).

- A function \(f : X \to Y \) is a bijection, if it is both injective and surjective.
4 Equivalence relations

The symbol \sim is reserved to denote a special relation, called equivalence relation. Using the standard notation, we write $x \sim y$ to mean that the pair (x, y) belongs to the relation \sim.

Recall that \sim being an equivalence relation (over some set, say, X) means it satisfies the following conditions.

- Reflexive: $x \sim x$, for every $x \in X$.
- Symmetric: $x \sim y$ if and only if $y \sim x$, for every $x, y \in X$.
- Transitive: for every $x, y, z \in X$, if $x \sim y$ and $y \sim z$, then $x \sim z$.

For $x \in X$, the equivalence class of x in \sim is defined as:

$$[x]_{\sim} := \{y \mid x \sim y\}$$

Theorem 1.1 If \sim is an equivalence relation over X, then the following holds.

- $[x]_{\sim} = [y]_{\sim}$ if and only if $x \sim y$.
- If $[x]_{\sim} \neq [y]_{\sim}$, then $[x]_{\sim} \cap [y]_{\sim} = \emptyset$.
- The equivalence classes of \sim partition X, i.e., every member of X belongs to exactly one equivalence class of \sim.

5 Countable and uncountable sets

Let \mathbb{N} be the set of natural numbers $\{0, 1, 2, \ldots\}$. A set X is countable, if there is an injective function from X to \mathbb{N}. Otherwise, it is called an uncountable set.

Theorem 1.2 The following sets are all countable.

- The set $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ of integers.
- The set \mathbb{N}^k, for every integer $k \geq 1$.
- The set $\mathbb{N}^* := \bigcup_{k\geq1} \mathbb{N}^k$.

Theorem 1.3 The set $2^{\mathbb{N}}$ is uncountable.

Theorem 1.4 For every alphabet Σ, the set Σ^* is countable.
Appendix

In this course it is important to be able to read mathematical/formal statements. It will take a while to get used to them. One important aspect of a formal statement is its use of “quantifiers.”

Consider the following statement.

Every student stays in a dormitory room. \hspace{1cm} (1)

If we want to write in strict logical form, we will have to write it in the following way.

For every student \(x \), there is a dormitory room \(y \) such that \(x \) stays in \(y \).

“For every” and “there exists” in the above sentence are called quantifiers.

The negation of statement (1) is:

There is student \(x \), for every dormitory room \(y \) such that \(x \) does not stay in \(y \). \hspace{1cm} (2)

Note also that neither (1) nor (2) are equivalent to the following sentence:

There is student \(x \), for every dormitory room \(y \) such that \(x \) stays in \(y \). \hspace{1cm} (3)