Question 1 (2 points). Consider the following Turing machine $M_1 = (\Sigma, \Gamma, q_0, q_{acc}, q_{rej}, \delta)$.

- $\Sigma = \{0, 1\}$.
- $\Gamma = \{\#, 0, 1, \sqcup\}$.
- $Q = \{q_0, p_0, p_1, s, t, r_0, r_1, q', q_{acc}, q_{rej}\}$.
- q_0, q_{acc}, q_{rej} are the initial, accepting and rejecting states, respectively.
- δ is defined as follows.

$$
\begin{align*}
(q_0, \sqcup) \rightarrow (q_{rej}, \sqcup, \text{Stay}) & \quad (p_0, \sqcup) \rightarrow (q_{rej}, 0, \text{Stay}) & (p_1, \sqcup) \rightarrow (s, 1, \text{Stay}) \\
(q_0, 0) \rightarrow (p_0, <, \text{Right}) & \quad (p_0, 0) \rightarrow (p_0, 0, \text{Right}) & (p_1, 0) \rightarrow (p_0, 1, \text{Right}) \\
(q_0, 1) \rightarrow (p_1, <, \text{Right}) & \quad (p_0, 1) \rightarrow (p_1, 0, \text{Right}) & (p_1, 1) \rightarrow (p_1, 1, \text{Right}) \\
(q_0, <) \rightarrow (q_{rej}, <, \text{Stay}) & \quad (p_0, <) \rightarrow (q_{rej}, <, \text{Stay}) & (p_1, <) \rightarrow (q_{rej}, <, \text{Stay})
\end{align*}
$$

\begin{align*}
(s, \sqcup) \rightarrow (q_{rej}, \sqcup, \text{Stay}) & \quad (t, \sqcup) \rightarrow (q_{rej}, \sqcup, \text{Stay}) & (q', \sqcup) \rightarrow (q', 0, \text{Left}) \\
(s, 0) \rightarrow (t, 1, \text{Left}) & \quad (t, 0) \rightarrow (t, 0, \text{Left}) & (q', 0) \rightarrow (r_0, 0, \text{Left}) \\
(s, 1) \rightarrow (s, 0, \text{Left}) & \quad (t, 1) \rightarrow (t, 1, \text{Left}) & (q', 1) \rightarrow (r_1, 0, \text{Left}) \\
(s, <) \rightarrow (r_1, <, \text{Right}) & \quad (t, <) \rightarrow (q_{acc}, <, \text{Stay}) & (q', <) \rightarrow (q_{acc}, <, \text{Right})
\end{align*}

Determine the run of M on each of the following input words: ϵ, 011, 100, 111.

Question 2 (2 points). In the following, for a Turing machine M, we denote by $L(M)$ the language that consists of all words accepted by M. That is, $L(M) = \{w \mid M \text{ accepts } w\}$.

Consider the following Turing machine A that works as follows.

INPUT: $|M|\$w$.
- Construct a TM $K_{M,w}$ that works as follows.
 - INPUT: $u \in \Sigma^*$.
 - Simulate M on w.
 - If M accepts w, ACCEPT.
 - If M rejects w:
 * If $u \in \{0^n1^n \mid n \geq 0\}$, ACCEPT.
 * Else, REJECT.
 - Output $|K_{M,w}|$.
Answer each of the following questions

(a) If M accepts w, what is the language $L(K_{M,w})$?

(b) If M rejects w, what is the language $L(K_{M,w})$?

(c) If M does not halt on w, what is the language $L(K_{M,w})$?

(d) Recall the language $L_5 := \{[M] \mid L(M)$ is a regular language$\}$ in the Note 11.

Is the following true?

$$[M] \# w \in \text{HALT} \text{ if and only if } [K_{M,w}] \in L_5$$

Justify your answer.

Question 3 (1 points). Consider the following language:

$$L_\infty := \{[M] \mid L(M) \text{ is infinite}\}.$$

That is, L_∞ consists of all descriptions of Turing machines that accepts infinitely many words. Prove that L_∞ is undecidable.

Question 4 (1 points). Prove that the following problem is undecidable.

Input: A CFG G and a DFA A.

Task: Decide whether $L(G) = L(A)$. That is, return True, if $L(G) = L(A)$. Otherwise, return False.

Question 5 (2 points). Prove that the class coNP is closed under union and intersection. That is,

- if $L_1, L_2 \in \text{coNP}$, then $L_1 \cup L_2 \in \text{coNP}$,
- if $L_1, L_2 \in \text{coNP}$, then $L_1 \cap L_2 \in \text{coNP}$.

Hint: Use the definition of coNP.

Question 6 (2 points). Prove that if $\text{SAT} \in \text{coNP}$, then $\text{NP} \subseteq \text{coNP}$, and hence, $\text{NP} = \text{coNP}$.

Hint: Use the fact that SAT is NP-hard. For this question, any solution that contains the term “coNP algorithm” will be penalized immediately.