Lesson 13: Gödel’s incompleteness theorem, part. II

Theme: Representability of recursive functions, fixed point lemma and Gödel’s first incompleteness theorem.

1 Some preliminary results on Robinson’s arithmetic \(\mathcal{Q} \)

Recall that all our formulas are over the vocabulary \(L_{ar} = \{ \tilde{0}, \text{Succ}, +, \cdot \} \), and that for every integer \(n \geq 0 \), we write \(\overline{n} \) to denote the term \(\text{Succ}^n(\tilde{0}) \), i.e., applying \(\text{Succ} \) on \(\tilde{0} \) for \(n \) number of times. For a vector \(\overline{a} = (a_1, \ldots, a_n) \) of integers, we will write \(\overline{a} \) to denote \((a_1, \ldots, a_n) \).

By a straightforward induction on \(n \) and \(m \), it is not that difficult to show that for every integers \(n, m \geq 0 \), the following holds.

\[
\text{(C1)} \quad \mathcal{Q} \vdash (\text{Succ}(x) + \overline{n}) \approx (x + \text{Succ}(\overline{n})).
\]

\[
\text{(C2)} \quad \mathcal{Q} \vdash (m + \overline{n}) \approx m + n.
\]

\[
\text{(C3)} \quad \mathcal{Q} \vdash (m \cdot \overline{n}) \approx m \cdot n.
\]

\[
\text{(C4)} \quad \mathcal{Q} \vdash n \not\approx m, \text{ for every } n \neq m.
\]

\[
\text{(C5)} \quad \mathcal{Q} \vdash m \leq n, \text{ for every } m \leq n.
\]

Recall that our vocabulary \(L_{ar} \) does not include \(\leq \). The formula \(m \leq n \) is actually an abbreviation for \(\exists z \ m + z \approx n \).

\[
\text{(C6)} \quad \mathcal{Q} \vdash \neg(m \leq n), \text{ for every } m \not\leq n.
\]

\[
\text{(C7)} \quad \mathcal{Q}, x \leq n \vdash (x \approx \tilde{0}) \lor (x \approx \tilde{1}) \lor \cdots \lor (x \approx n).
\]

\[
\text{(C8)} \quad \mathcal{Q} \vdash (x \leq n) \lor (n \leq x).
\]

All these statements show that the natural meaning of the standard operations like addition and multiplication are provable in \(\mathcal{Q} \), and hence, in any extension \(T \supseteq \mathcal{Q} \).

Definition 13.1

- A formula \(\varphi \) is called a \(\Delta_0 \)-formula, if all its quantifiers are bounded quantifiers, i.e., of the form \(\forall x \leq t \) \(\alpha \), where \(t \) is a term over \(L_{ar} \).

 Intuitively \(\forall x \leq t \) \(\alpha \) states “for every \(x \leq t \), the formula \(\alpha \) holds.”

- A formula \(\varphi \) is called a \(\Sigma_1 \)-formula, if it is of the form \(\exists \bar{x} \psi \), where \(\psi \) is a \(\Delta_0 \)-formula.

- A formula \(\varphi \) is called a \(\Pi_1 \)-formula, if it is of the form \(\forall \bar{x} \psi \), where \(\psi \) is a \(\Delta_0 \)-formula.

Proposition 13.2 Let \(t \) be a term over \(L_{ar} \) with free variables \(x_1, \ldots, x_n \). For a valuation \(\text{val}: \text{VAR} \rightarrow \mathbb{N} \), consider the substitution \(\text{sub} := [x_1/\text{val}(x_1), \ldots, x_n/\text{val}(x_n)] \). Then,

\[
\begin{align*}
\text{val}^N[t] & = m \quad \text{if and only if} \quad \mathcal{Q} \vdash t[\text{sub}] \approx m \\
\text{val}^N[t] & \leq m \quad \text{if and only if} \quad \mathcal{Q} \vdash t[\text{sub}] \leq m
\end{align*}
\]

Proof. By straightforward induction on \(t \) together with (C1)–(C8) above. ■

Theorem 13.3 below will be very useful. It states that in order to check whether a \(\Delta_0 \)-sentence \(\varphi \) is provable in \(\mathcal{Q} \), it is sufficient to check whether it holds in \(\mathbb{N} \). In other words, instead of looking for a proof of \(\varphi \), we simply checks whether it holds in \(\mathbb{N} \), which is a more convenient and intuitive system to work with.
Theorem 13.3 For every Δ_0-formula $\varphi(\bar{x})$, where $\bar{x} = (x_1, \ldots, x_n)$, the following holds. For every $\bar{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$:

$$\mathcal{N} \models \varphi(\bar{a}) \iff Q \vdash \varphi(\bar{a}).$$

Proof. The proof is by induction on φ. The base case, when the atomic formula of the form $s \approx t$, can be deduced directly from Proposition 13.2.

The induction step consists of three cases.

Case 1: $\varphi(\bar{x})$ is $\neg \alpha(\bar{x})$.

$\mathcal{N} \models \varphi(\bar{a})$ if and only if $\mathcal{N} \not\models \alpha(\bar{a})$, if and only if $Q \not\vdash \alpha(\bar{a})$, if and only if $Q \vdash \varphi(\bar{a})$, with the second “if and only if” coming from the induction hypothesis.

Case 2: $\varphi(\bar{x})$ is $\alpha_1(\bar{x}) \land \alpha_2(\bar{x})$.

$\mathcal{N} \models \varphi(\bar{a})$ if and only if $\mathcal{N} \models \alpha_1(\bar{a}) \land \alpha_2(\bar{a})$, if and only if $\mathcal{N} \models \alpha_1(\bar{a})$ and $\mathcal{N} \models \alpha_2(\bar{a})$, if and only if $Q \vdash \alpha_1(\bar{a})$ and $Q \vdash \alpha_2(\bar{a})$, if and only if $Q \vdash \varphi(\bar{a})$, with the third “if and only if” coming from the induction hypothesis.

Case 3: $\varphi(\bar{x})$ is $\forall z \leq t \alpha(\bar{x}, z)$.

Let val denote the valuation that maps x_i to a_i, and sub denote the substitution that substitute x_i with a_i. Let $M = t^{\mathcal{N}[\text{val}]}$. By Proposition 13.2 we have $Q \vdash t \approx M$.

$\mathcal{N} \models \varphi(\bar{a})$ if and only if for every $m \leq M$,

$$\mathcal{N}, [\text{val}, z \mapsto m] \models \alpha(\bar{a}, z),$$

which holds, if and only if for every $m \leq M$,

$$Q \vdash \alpha[\text{sub}, z/m],$$

which holds, if and only if

$$Q, z \leq M \vdash \alpha[\text{sub}, z],$$

which holds, if and only if

$$Q \vdash (\forall z \leq M) \alpha(\bar{x}, z),$$

which holds, if and only if

$$Q \vdash (\forall z \leq t) \alpha(\bar{x}, z).$$

The third “if and only if” comes from the induction hypothesis, while the fourth is from (C5) and (C7). The fifth comes from the fact that $(\forall z \leq M) \alpha(\bar{x}, z)$ is an abbreviation of $\forall z (z \leq M \rightarrow \alpha(\bar{x}, z))$. The last one comes from $Q \vdash t \approx M$.

\blacksquare
2 Representable functions

In the following let \(\bar{x} \) be a vector of variables, and \(\bar{a} \) be a vector of natural numbers with the same length as \(\bar{x} \).

Representable functions in a theory \(T \supseteq \mathbb{Q} \). A function \(f : \mathbb{N}^k \to \mathbb{N} \) is called representable in a theory \(T \supseteq \mathbb{Q} \), if there is a formula \(\varphi(\bar{x},y) \) such that \(f(\bar{a}) = m \) if and only if \(T \vdash \varphi(\bar{a},m) \). Note that this is equivalent to saying that if \(T \vdash y \approx m \leftrightarrow \varphi(\bar{a},y) \).

It is \(\Sigma_1 \)-representable, if the formula \(\varphi(\bar{x}) \) is \(\Sigma_1 \)-formula, and the formula \(\varphi \) is called the representation formula for \(f \).

Likewise, a relation \(R \subseteq \mathbb{N}^k \) is called representable in a theory \(T \supseteq \mathbb{Q} \), if there is a formula \(\varphi(\bar{x}) \) such that if \(\bar{a} \in R \), then \(T \vdash \varphi(\bar{a}) \); and if \(\bar{a} \notin R \), then \(T \vdash \neg \varphi(\bar{a}) \).

Arithmetical functions (functions representable in \(\mathcal{N} \)). A function \(f : \mathbb{N}^k \to \mathbb{N} \) is called arithmetical, or representable in \(\mathcal{N} \), if there is a formula \(\varphi(\bar{x},y) \) such that \(f(\bar{a}) = m \) if and only if \(\mathcal{N} \models \varphi(\bar{a},m) \). The notions of \(\Sigma_1 \)-representable and \(\Pi_1 \)-representable are defined similarly as above.

3 Representability of recursive functions

In this section we will show the following theorem.

Theorem 13.4 Every recursive function \(f \) is representable by a \(\Sigma_1 \)-formula in \(\mathbb{Q} \).

The proof consists of two steps:

1. We show that \(f \) is representable in \(\mathcal{N} \) by a \(\Sigma_1 \)-formula, as well as by a \(\Pi_1 \)-formula.
2. We show that it can be represented by a \(\Sigma_1 \)-formula in \(\mathbb{Q} \).

Representing \(f \) in \(\mathcal{N} \). The proof is by induction on \(f \). The base case is as follows.

- \(f \) is the constant zero function, i.e., \(f(\bar{x}) = 0 \).
 Then, \(\varphi(\bar{x},y) := y \approx 0 \) is a \(\Delta_0 \)-formula representing \(f \).

- \(f \) is the successor function of one of its component, i.e., \(f(\bar{x}) = \text{Succ}(x_i) \).
 Then, \(\varphi(\bar{x},y) := y \approx \text{Succ}(x_i) \) is a \(\Delta_0 \)-formula representing \(f \).

- \(f \) is the projection function to one of its components, i.e., \(f(\bar{x}) = x_i \).
 Then, \(\varphi(\bar{x},y) := y \approx x_i \) is a \(\Delta_0 \)-formula representing \(f \).

The induction step is as follows.

- Functions obtained from applying the composition rule \(\text{Oc} \).
Let \(f = h[g_1, \ldots, g_m] \) be a function from \(\mathbb{N}^n \to \mathbb{N} \), i.e., each \(g_i : \mathbb{N}^n \to \mathbb{N} \) and \(h : \mathbb{N}^m \to \mathbb{N} \).
By the induction hypothesis, let \(\alpha \) and \(\gamma_i \) be \(\Sigma_1 \)-formulas representing \(h \) and \(\gamma_i \), respectively.
Both \(\Sigma_1 \)-formula \(\varphi_1 \) and \(\Pi_1 \)-formula \(\varphi_2 \) below represent \(f \) in \(\mathcal{N} \).

\[
\varphi_1(\bar{x},z) := \exists y_1 \cdots \exists y_m \bigwedge_{1 \leq i \leq m} \gamma_i(\bar{x},y_i) \wedge \alpha(y_1, \ldots, y_m, z)
\]
\[
\varphi_2(\bar{x},z) := \forall u \left(\varphi_1(\bar{x},u) \rightarrow u \approx z \right)
\]
• Functions obtained from applying the primitive recursive rule Op.

This is the most challenging part. See the appendix for the details.

• Functions obtained from applying the rule $\text{O}\mu$.

Let $\bar{x} = (x_1, \ldots, x_n)$, and let $f(\bar{x}) := \mu y[g(\bar{x}, y) = 0]$. By the induction hypothesis, there is a Σ_1-formula $\alpha_1(x, y, z)$, and a Π_1-formula $\alpha_2(x, t, z)$ representing g in \mathcal{N}.

$$\alpha_1(x, y, z) := \exists v \psi_1(x, y, z, v)$$

where ψ_1 is a Δ_0-formula

$$\alpha_2(x, y, z) := \forall w \psi_2(x, y, z, w)$$

where ψ_2 is a Δ_0-formula

Consider the formula φ_1 below.

$$\varphi_1(x, y) := \alpha_1(x, y, \bar{0}) \land (\forall z < y) \neg \alpha_2(x, z, \bar{0})$$

$$:= \exists v \psi_1(x, y, z, v) \land (\forall z < y) \exists w \neg \psi_2(x, z, \bar{0}, w)$$

We have the following identity (can be easily proved) in \mathcal{N}:

$$\mathcal{N} \models (\forall z < y) \exists u \psi \equiv \exists u'(\forall z < y) \neg (\forall u < u') \neg \psi$$

Therefore, the following Σ_1-formula φ'_1 is equivalent to φ_1 in \mathcal{N}.

$$\varphi'_1(x, y) := \exists v \psi_1(x, y, z, v) \land \exists \bar{w}'(\forall z < y) \psi_2(x, z, \bar{0})$$

where ψ_2' is a Δ_0-formula

$$:= \exists v \exists \bar{w}' \left(\psi_1(x, y, z, v) \land (\forall z < y) \psi_2'(x, z, \bar{0}) \right)$$

Thus, φ'_1 is the desired Σ_1-formula representing f in \mathcal{N}.

A Π_1-formula φ_2 representing f can be obtained as follows.

$$\varphi_2(x, y) := \forall u \left(\varphi'_1(x, u) \rightarrow u \approx y \right)$$

Representing f in \mathcal{Q}. Note that if f is representable in \mathcal{Q}, then by monotonicity rule, it is representable in $T \supseteq \mathcal{Q}$.

Let $f : \mathbb{N}^n \rightarrow \mathbb{N}$ be a recursive function, and let $\varphi(\bar{x}, y) := \exists z \psi(\bar{x}, y, z)$ be its representing formula in \mathcal{N}, where ψ is Δ_0-formula. That is, for every $\bar{a} \in \mathbb{N}^n$,

$$f(\bar{a}) = b \text{ if and only if } \mathcal{N} \models \varphi(\bar{a}, b).$$

We have to show that for every $\bar{a} \in \mathbb{N}^n$,

$$f(\bar{a}) = b \text{ if and only if } \mathcal{Q} \models \varphi(\bar{a}, b).$$

We start with the “if” part. Suppose $f(\bar{a}) = b$. Since φ represents f, for some \bar{w},

$$\mathcal{Q} \models \psi(\bar{a}, b, \bar{w})$$

Since ψ is Δ_0-formula, by Theorem 13.3, we have $\mathcal{N} \models \psi(\bar{a}, b, \bar{w})$, and hence, $\mathcal{Q} \models \exists \bar{z} \psi(\bar{a}, b, \bar{z})$.

Now, we show the “only if” part. Suppose for some \bar{w}, $\mathcal{Q} \models \psi(\bar{a}, b, \bar{w})$. Since $\mathcal{N} \models \mathcal{Q}$, we have that $\mathcal{N} \models \psi(\bar{a}, b, \bar{w})$, and thus, $\mathcal{N} \models \exists \bar{z} \psi(\bar{a}, b, \bar{z})$. Therefore, $\mathcal{N} \models \varphi(\bar{a}, b)$. Since φ represents f, we have $f(\bar{a}) = b$. This completes the proof of Theorem 13.4.
4 Fixed point lemma and Gödel’s first incompleteness theorem

Recall that in order to prove Gödel’s incompleteness theorem, we have to show that:

- Every recursive function is representable in Q.
- For a consistent and recursively axiomatizable theory $T \supseteq Q$, there is a sentence Ψ such that $T \vdash \Psi \iff (\forall y \neg \text{ISPROOFOF}_{T}(y, \#\Psi))$.

We describe how to achieve the first part in the previous section. We will now describe how to achieve the second part.

For a variable x, define the function $\text{Subs}_x : \mathbb{N}^2 \to \mathbb{N}$ as follows.

$$\text{Subs}_x(N, m) := K$$

where K is “the formula” obtained by substituting variable x with the term m in “formula” N. Here, “the formulas” K and N refer to the formulas whose Gödel’s numbers are K and N, respectively. It is not that difficult to think of a computer program for Subs_x. So, it is also a recursive function, and can be represented in a theory Q, and hence, in any extension $T \supseteq Q$.

Let $\Lambda_{\text{Subs}_x}(v_1, v_2, v_3)$ be a Σ_1-formula representing Subs_x.

Lemma 13.5 (Fixed point lemma) Let $T \supseteq Q$. For every formula $\alpha(z)$ over vocabulary $\{0, \text{Succ}, +, \cdot\}$, there is a formula γ such that $T \vdash \gamma \iff \alpha(\#\gamma)$.

Proof. Due to the definition of $\Lambda_{\text{Subs}_x}(v_1, v_2, v_3)$, for every formula φ,

$$T \vdash \Lambda_{\text{Subs}_x}(\#\varphi, n, y) \iff y \approx \#\varphi[x/n]$$

If we plug in n with $\#\varphi$ itself,

$$T \vdash \Lambda_{\text{Subs}_x}(\#\varphi, \#\varphi, y) \iff y \approx \#\varphi[x/\#\varphi] \quad (1)$$

Let $\beta(x)$ be the following formula.

$$\beta(x) := \forall y \left(\Lambda_{\text{Subs}_x}(x, x, y) \rightarrow \alpha[z/y] \right)$$

Consider $\gamma := \beta[x/\#\beta]$. That is, $\gamma = \forall y \left(\Lambda_{\text{Subs}_x}(\#\beta, \#\beta, y) \rightarrow \alpha[z/y] \right)$.

By (1),

$$T \vdash \gamma \iff \forall y \left(y \approx \#\beta[x/\#\beta] \rightarrow \alpha[z/y] \right)$$

Since $\gamma = \beta[x/\#\beta]$, $T \vdash \gamma \iff \forall y \left(y \approx \#\gamma \rightarrow \alpha[z/y] \right)$.

This completes the proof of fixed point lemma. $lacksquare$

To wrap up, we state and prove formally Gödel’s incompleteness theorem.
Theorem 13.6 (Gödel’s incompleteness theorem) For every consistent and recursively axiomatizable theory \(T \supseteq Q \), there is a sentence \(\Psi \) such that neither \(T \vdash \Psi \) nor \(T \vdash \neg \Psi \).

Proof. Since \(T \) is recursively axiomatizable theory, we have a “computer program” on an input proof \(y \), output \(x \), which represents the conclusion of the proof \(y \). By Church-Turing thesis, every “computer program” is equivalent to a recursive function, and by Theorem 13.4, a recursive function can be represented in \(\Sigma_1 \)-formula in \(T \supseteq Q \). Thus, we have a \(\Sigma_1 \)-formula \(\text{IsProofOf}_T(y, x) \) which states that \(y \) is a proof of \(x \). In particular, we also have the following formula.

\[
\text{PROVABLE}_T(x) := \exists y \, \text{IsProofOf}_T(y, x)
\]

such that

\[
T \vdash \varphi \leftrightarrow \text{PROVABLE}_T(\sharp \varphi)
\]

Consider the negation of \(\text{PROVABLE}_T(x) \), i.e., \(\neg \text{PROVABLE}_T(x) \). By fixed-point lemma, there is \(\Psi \) such that

\[
T \vdash \Psi \leftrightarrow \neg \text{PROVABLE}_T(\sharp \Psi)
\]

which is simply

\[
T \vdash \Psi \leftrightarrow \forall y \neg \text{IsProofOf}_T(y, \sharp \Psi)
\]

Following the argument in Section 3 in Lesson 13, neither \(\Psi \) nor \(\neg \Psi \) are provable in \(T \).

Appendix: Representing the Op rule

The proof consists of two steps.

- First, we construct a function \(G : \mathbb{N}^2 \to \mathbb{N} \) representable with \(\Delta_0 \)-formula such that for every \(n \), for every sequence \(c_0, \ldots, c_n \), there is \(c \) such that for all \(i = 0, \ldots, n \), we have \(G(c, i) = c_i \).

- Using the function \(G \) constructed, we can represent the Op rule with a \(\Sigma_1 \)-formula.

Intuitively, the function \(G \) “encodes” every sequence element \((c_0, \ldots, c_n) \in \mathbb{N}^n = \bigcup_{i \geq 1} \mathbb{N}^i \) as a number \(c \) such that to retrieve an element \(c_i \), we simply “access” \(G(c, i) \).

Constructing the function \(G \) (Gödel’s way). Consider the following bijection \(\varphi : \mathbb{N}^2 \to \mathbb{N} \).

\[
\varphi(a, b) := a + \sum_{i=1}^{a+b} i = a + \frac{1}{2}(a + b)(a + b + 1)
\]

Note that \(a, b \leq \varphi(a, b) \), for every \(a, b \). It is trivial that \(\varphi \) can be represented by a \(\Delta_0 \)-formula.

Let \(F : \mathbb{N}^3 \to \mathbb{N} \) be the following function.

\[
F(a, b, i) := \text{the remainder of } a \text{ divided by } 1 + (1 + i)b
\]

It is not that difficult to show that the function \(F \) is represented by a \(\Delta_0 \)-formula.

Let \(\text{Proj}_x \) and \(\text{Proj}_y \) be the following functions. For every \(m \in \mathbb{N} \), if \(\varphi^{-1}(m) = (a, b) \),

\[
\text{Proj}_x(m) := a \quad \text{and} \quad \text{Proj}_y(m) := b
\]
Consider the following function $G : \mathbb{N}^2 \rightarrow \mathbb{N}$.

$$G(c, i) := F(\text{Proj}_x(c), \text{Proj}_y(c), i)$$

The function G can be represented with a Δ_0-formula as follows.

$$G(c, i) = m \text{ if and only if } (\exists x \leq c)(\exists y \leq c) \left(\varphi(a, b) = c \land F(a, b, i) = m \right)$$

The underlined parts denote abbreviations of the formulas that represent $\varphi(a, b) = c$ and $F(a, b, i) = m$, respectively.

We will show that G is our desired function. In the following we write $a \mid b$ to denote that a divides b, i.e., when b is divided by a, there is no remainder. For two positive integers a, b, we say that a and b are coprime, if there is no prime p that divides both a and b.

Lemma 13.7 (Euclid) If a and b are coprime, then there are $x, y \in \mathbb{N}$ such that $ax + 1 = by$.

Theorem 13.8 (Chinese remainder theorem) Let $c_0, \ldots, c_k, d_0, \ldots, d_k$ such that $c_i < d_i$. Let d_1, \ldots, d_k be pairwise coprime. Then, there exists an integer $a \in \mathbb{N}$ such that $\text{rem}(a, d_i) = c_i$, i.e., the remainder of a divided by d_i is c_i.

Theorem 13.9 For every n, for every sequence c_0, \ldots, c_n, there exist a, b such that for all $i = 0, \ldots, n$, we have $F(a, b, i) = c_i$.

Since $G(\varphi(a, b), i) = F(a, b, i)$, we have that for every sequence c_0, \ldots, c_n, there is c, which is $\varphi(a, b)$ and greater than each c_i, such that for all $i = 0, \ldots, n$, we have $G(c, i) = c_i$.

Proof. Let c_0, \ldots, c_n be a sequence of natural numbers. Consider the following two numbers M and K.

- $M := \max(n, c_0, \ldots, c_n)$.
- $b := \text{lcm}(1, \ldots, M)$, where “lcm” is least common multiplier.

Let $d_i := 1 + (1 + i)b$, for each $i = 0, \ldots, n$. Note that $d_i > c_i$.

We claim that d_0, \ldots, d_n are pairwise coprime. Suppose to the contrary that there is a prime p that divides both d_i and d_j. Thus, $p \mid d_i - d_j = (i - j)b$. So, either $p \mid (i - j)$ or $p \mid b$.

Now, $i, j \leq M$, since b is the least common multiplier of all integers between 1 and M, we have $(i - j) \mid b$. This means that $p \mid b$. By definition of $d_i, b \mid (d_i - 1)$, which means $p \mid (d_i - 1)$. This is absurd, since $p \mid d_i$. So, there is such prime p that divides d_i and d_j. In other words, d_0, \ldots, d_n are coprime.

By Theorem 13.8, there is a such that $\text{rem}(a, d_i) = c_i$. By the definition of the function F, we have $F(a, b, i) = c_i$. By the construction, it is obvious that $\varphi(a, b) > c_i$. \blacksquare

Representing functions obtained from applying Op rule. Let $g \in F_n$ and $h \in F_{n+2}$ be recursive functions.

- Let g be represented by a Σ_1-formula α_1, as well as a Π_1-formula α_2.
- Let h be represented by a Σ_1-formula β_1, as well as a Π_1-formula β_2.

Suppose $f \in F_{n+1}$ is the function obtained via the Op rule as follows. For every $\bar{a} \in \mathbb{N}^n$,

$$f(\bar{a}, 0) := g(\bar{a}) \quad \text{and} \quad f(\bar{a}, \text{Succ}(b)) := h(\bar{a}, b, f(\bar{a}, b))$$
The following formula represents f.

$$
\varphi(\bar{x}, y, z) := \left(y \approx \tilde{0} \rightarrow \alpha_1(\bar{x}, z)\right) \land \exists z' (\forall y' < y) \left(G(z', \text{Succ}(y')) = h(\bar{x}, y', G(z', y'))\right)
$$

Intuitively, the variable z' is such that for every $i \leq y$, $G(z', i) = f(\bar{x}, i)$.

Now, $\varphi(\bar{x}, y, z)$ can be rewritten into:

$$
\varphi(\bar{x}, y, z) := \left(y \approx \tilde{0} \rightarrow \alpha_1(\bar{x}, z)\right) \land \\
\exists z' (\forall y' < y)(\forall u < z')(\forall v < z') \\
\left(G(z', \text{Succ}(y')) = u \land G(z', y') = v \rightarrow \beta_1(\bar{x}, y', u_2, u_1)\right)
$$

By pulling all the existential quantifiers from β_1 and $\exists z'$ to the front of the formula, we obtain a Σ_1-formula. A Π_1-formula can be obtained via:

$$
\varphi'(\bar{x}, y, z) := \forall w \ \varphi(\bar{x}, y, w) \rightarrow w \approx z
$$