Lesson 12: Gödel’s incompleteness theorem, part. I

Theme: Robinson arithmetic and its arithmetization.

In this lesson and the next, we are only dealing with logic over vocabulary \{\tilde{0}, \text{Succ}, +, \cdot\}, where \tilde{0} is a constant symbol intended to represent the number zero; \text{Succ} is a unary function intended to represent +1, i.e., \text{Succ}(x) = x + 1; and finally, + and \cdot are intended to represent the standard addition and multiplication operands.

1 Robinson arithmetic

Robinson’s arithmetic is a theory \(Q\) derived from the following axioms.

(Q1) \(\forall x \ (\text{Succ}(x) \neq 0)\).

(Q2) \(\forall x \forall y \ (\text{Succ}(x) \approx \text{Succ}(y) \rightarrow x \approx y)\).

(Q3) \(\forall x \ (x \neq \tilde{0} \rightarrow \exists y \ x \approx \text{Succ}(y))\).

(Q4) \(\forall x \ (x + \tilde{0} \approx x)\).

(Q5) \(\forall x \forall y \ (x + \text{Succ}(y) \approx \text{Succ}(x + y))\).

(Q6) \(\forall x \ (x \cdot \tilde{0} \approx \tilde{0})\).

(Q7) \(\forall x \forall y \ (x \cdot \text{Succ}(y) \approx (x \cdot y) + x)\).

Note that by its definition, \(Q\) is a finitely axiomatizable theory, and that \(Q\) is a proper subtheory of \(\text{Th}(\mathcal{N})\), where \(\mathcal{N}\) is the standard structure \(\mathcal{N} = (\mathbb{N}, 0, \text{Succ}, +, \cdot)\). What we call number theory usually refers to \(\text{Th}(\mathcal{N})\). Note that \(\text{Th}(\mathcal{N})\) is much stronger than \(Q\). For example, \(\forall x \ x \neq \text{Succ}(x)\) is not provable in \(Q\).

In the following, we will often write \(x \leq y\) as an abbreviation for \(\exists z \ x + z \approx y\), and \(x < y\) for \(x \leq y \land x \neq y\).

Remark 12.1 For the rest of this lesson and the next, the proof system will always be in a theory \(T \supseteq Q\), with the sentences (Q1)–(Q7) above being included as axioms of \(T\).

2 Arithmetization

We denote the set \(\text{Symb} = \{\neg, \land, \lor, (\), \approx, \tilde{0}, \text{Succ}, +, \cdot, x_0, x_1, x_2, \ldots\}\) In principle, we can assume that every formula is a string with symbols from \(\text{Symb}\), and every proof is a sequence of formulas with a comma in between two formulas.

In this section we are going to see how to encode a formula \(\varphi\) as a number, and hence, a proof as a number too. For this purpose, we assign each symbol \(s \in \text{Symb} \cup \{\}\) a number \#s as follows.

\[
\begin{array}{cccccccccccc}
\text{s} & \neg & \land & \lor & () & \approx & \tilde{0} & \text{Succ} & + & \cdot & x_0 & x_1 & x_2 & \ldots \\
\#s & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & \ldots
\end{array}
\]

Let \(\{p_0, p_1, \ldots\}\) be the set of all prime numbers with \(p_0 < p_1 < \cdots\).
For a string $str = s_0 \cdots s_n$ with each symbol s_i coming from $\text{Symb} \cup \{\|\}$, the \textit{Gödel number} of str, denoted by $\sharp str$ is the number:

$$\sharp str := p_{\sharp s_0}^0 p_{\sharp s_1}^1 \cdots p_{\sharp s_n}^n$$

The Gödel numbers of a formula φ and a proof ξ are defined as $\sharp \varphi$ and $\sharp \xi$, respectively, where φ and ξ are viewed as a string of symbols coming from $\text{Symb} \cup \{\|\}$.

\textbf{Remark 12.2}

- We can write a computer program \textsc{IsFormula} for the following task.
 - \textbf{Input:} A positive number N.
 - \textbf{Output:} Output \textsc{True}, if N “represents” a formula, i.e., N is the Gödel number of a formula. Otherwise, output \textsc{False}.

Likewise, we can write a program \textsc{IsSentence} that checks whether an input number N represents a sentence.

- We can write a computer program \textsc{IsProof}_Q for the following task.
 - \textbf{Input:} A positive number N.
 - \textbf{Output:} Output \textsc{True}, if N represents a proof in Q. Otherwise, output \textsc{False}.

- We can write a computer program \textsc{IsProofOf}_Q for the following task.
 - \textbf{Input:} Two positive numbers N and M.
 - \textbf{Output:} Output \textsc{True}, if N represents a proof, M represents a formula, and N is a proof of M in Q. Otherwise, output \textsc{False}.

\textbf{Definition 12.3} Let T be a theory such that $T = \text{Cn}(\Sigma)$. We say that T is \textit{recursively axiomatizable}, if there is a computer program \textsc{IsAxiom}_T for the following task.

- \textbf{Input:} A positive number N.
- \textbf{Output:} Output \textsc{True}, if N represents an axiom in T, i.e., N represents a sentence Σ. Otherwise, output \textsc{False}.

\textbf{Remark 12.4}

- We can write a computer program \textsc{IsProofOf}_T for the following task.
 - \textbf{Input:} Two positive numbers N and M.
 - \textbf{Output:} Output \textsc{True}, if N represents a proof in T, M represents a formula, and N is a proof of M in T. Otherwise, output \textsc{False}.
3 A sketch proof of the incompleteness theorem

Gödel’s incompleteness theorem states that for every consistent and recursively axiomatizable theory $T \supseteq Q$, there is a sentence Ψ such that neither Ψ nor $\neg \Psi$ are provable in T.

For an integer $N \geq 0$, let \bar{N} denote the following term:

$$
\bar{N} := \text{Succ} \cdots \text{Succ}(\bar{0}) \text{ N times}
$$

Now, suppose that instead of being a computer program, the boolean function $\text{IsProofOf}_T(y, x)$ is a first-order formula that indicates y is a proof of x in T. So, for every sentence φ,

$$
T \vdash \varphi \iff T \vdash \exists y \text{IsProofOf}_T(y, \#\varphi). \quad (1)
$$

Consider a sentence Ψ such that

$$
T \vdash \Psi \iff \left(\forall y \neg \text{IsProofOf}_T(y, \#\Psi) \right) \quad (2)
$$

which is an abbreviation for:

$$
T \vdash \Psi \rightarrow \left(\forall y \neg \text{IsProofOf}_T(y, \#\Psi) \right) \quad (3)
$$

$$
T \vdash \left(\forall y \neg \text{IsProofOf}_T(y, \#\Psi) \right) \rightarrow \Psi \quad (4)
$$

From Equation (4), we can derive

$$
T \vdash \neg \Psi \rightarrow \neg \left(\forall y \neg \text{IsProofOf}_T(y, \#\Psi) \right) \quad (5)
$$

We now argue that neither $T \vdash \Psi$ nor $T \vdash \neg \Psi$.

- Suppose $T \vdash \Psi$.
 Applying modus ponens on $T \vdash \Psi$ and Equation (3), we have

$$
T \vdash \forall y \neg \text{IsProofOf}_T(y, \#\Psi)
$$

which by Equation (1), means Ψ is not provable in T, contradicting supposition $T \vdash \Psi$.

- Suppose $T \vdash \neg \Psi$.
 Applying modus ponens on $T \vdash \neg \Psi$ and Equation (5),

$$
T \vdash \neg \forall y \neg \text{IsProofOf}_T(y, \#\Psi)
$$

which is equivalent to

$$
T \vdash \exists y \text{IsProofOf}_T(y, \#\Psi).
$$

By Equation (1), it means $T \vdash \Psi$, contradicting the consistency of T.

Therefore, neither Ψ nor $\neg \Psi$ are provable in T, hence the incompleteness of T.

In this lesson and the next, we focus on the following two tasks in order to complete our proof above.

(a) Find the formula for $\text{IsProofOf}_T(y, x)$ using the vocabulary $\{\bar{0}, \text{Succ}, +, \cdot\}$.

(b) Find the statement Ψ.

*Recall that in Lesson 4 we show if $X \vdash \alpha \rightarrow \beta$, then $X \vdash \neg \beta \rightarrow \neg \alpha$, which is called contrapositive.

†Recall that in Lesson 4 we show if $X \vdash \alpha \rightarrow \beta$ and $X \vdash \alpha$, then $X \vdash \beta$, which is called modus ponens.
Appendix

We will formalize the notion of *recursive functions*, which are equivalent to the notion of computable functions. Recall that $\mathbb{N} = \{0, 1, 2, \ldots \}$. Let F_n be the set of all functions from \mathbb{N}^n to \mathbb{N}, and let $F := \bigcup_{n \geq 1} F_n$.

μ-recursive functions, or shortly, recursive functions, are functions that are built inductively as follows.

- **Base case:** All three kinds of functions below are recursive.

 - **Constant function:** $f(v_1, \ldots, v_n) = 0$.
 - **Successor function (on the i-component):** $f(v_1, \ldots, v_n) = \text{Succ}(v_i)$.
 - **Projection function (to the i-component):** $f(v_1, \ldots, v_n) = v_i$.

- **Induction step:** All the functions built up from recursive functions using one of the rules below are recursive functions.

 - **Composition (Oc).** If $h \in F_m$ and $g_1, \ldots, g_m \in F_n$ are recursive, then the following function f is also recursive. For every $\bar{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$,

 \[
 f(\bar{a}) := h(g_1(\bar{a}), \ldots, g_m(\bar{a})).
 \]

 We usually write $h[g_1, \ldots, g_m]$ to denote the function f constructed above.

 - **Primitive recursion (Op).** If $g \in F_n$ and $h \in F_{n+2}$ are recursive functions, then so is $f \in F_{n+1}$, defined as follows. For every $\bar{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$,

 \[
 f(\bar{a}, 0) := g(\bar{a})
 \]

 \[
 f(\bar{a}, \text{Succ}(b)) := h(\bar{a}, b, f(\bar{a}, b))
 \]

 - **μ operation (Oμ).** Let $g \in F_{n+1}$ be such that for every $\bar{a} \in \mathbb{N}^n$, there is $b \in \mathbb{N}$, where $g(\bar{a}, b) = 0$. If g is computable, then so is the following function f. For every $\bar{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$,

 \[
 f(\bar{a}) := \text{the smallest } b \text{ such that } g(\bar{a}, b) = 0
 \]

 We write $f(\bar{a}) := \mu b[g(\bar{a}, b) = 0]$ to denote the function f as constructed above.

A recursive function obtained without using the Oμ rule is called a *primitive recursive* function.

Example 12.5

- The function $f_{\text{add}}(a, b) = a + b$ is recursive by an application of Op rule.

 \[
 f_{\text{add}}(a, 0) := a \quad \text{and} \quad f_{\text{add}}(a, \text{Succ}(b)) := \text{Succ}(f_{\text{add}}(a, b))
 \]

- The functions $f_{\text{mul}}(a, b) = a \cdot b$ and $f_{\text{exp}}(a, b) = a^b$ are recursive.

 \[
 f_{\text{mul}}(a, 0) := 0 \quad \text{and} \quad f_{\text{mul}}(a, \text{Succ}(b)) := f_{\text{add}}(b, f_{\text{mul}}(a, b))
 \]

 \[
 f_{\text{exp}}(a, 0) := \text{Succ}(0) \quad \text{and} \quad f_{\text{exp}}(a, \text{Succ}(b)) := f_{\text{mul}}(a, f_{\text{exp}}(a, b))
 \]

- The function $f_{\text{abs}}(a, b) := |a - b|$ is recursive.

- The function $f_{\text{div}}(a, b) := 0$, if b divides a, and 1, otherwise, is recursive.
• The function $f_{\text{prime}}(n) := p_n$, where p_n is the n^{th} prime number, is recursive.

Theorem 12.6 (Church-Turing thesis) If a function f is computable (by a “computer program”), then it is also (i) computable in λ-calculus; (ii) computable by a Turing machine; (iii) μ-recursive.

In fact, the notions of λ-calculus, Turing machines, and μ-recursive are all equivalent. That is, a function is computable in λ-calculus if and only if it is computable by a Turing machine if and only if it is μ-recursive.

In his original paper, Gödel showed the following.

• An explicit construction of the primitive recursive function for $\text{IsProofOf}(x, y)$ as specified in Remark 12.4.
• For every primitive recursive function $f : \mathbb{N}^n \to \mathbb{N}$, there is a formula $\alpha(x_1, \ldots, x_n, y)$ over vocabulary $\{\text{Succ}, +, \cdot, \tilde{0}\}$ such that
 \[f(a_1, \ldots, a_n) = b \quad \text{if and only if} \quad T \vdash \alpha(a_1, \ldots, a_n, b) \]

An explicit formula for IsProofOf is conceptually not difficult, but long and tedious. In this class, having convinced ourselves that we can write a computer program for $\text{IsProofOf}(x, y)$, we can invoke Church-Turing thesis to arrive at the conclusion that $\text{IsProofOf}(x, y)$ is recursive. On the other hand, converting a recursive function f to a formula α as specified in Equation (6) involves a very nice piece of mathematics, and this will be our focus in our next lesson.

§To be exact, expressing Oc and O_μ rules in formulas over $\{\tilde{0}, \text{Succ}, +, \cdot\}$ is not difficult. The main difficulty is in expressing the Op.
