Lesson 8: Logical consequences and theories

Theme: Logical consequences and first-order theories.

1 Logical consequences

Definition 8.1 Let X be a set of formulas. We write $(\mathcal{A}, \text{val}) \models X$, if $(\mathcal{A}, \text{val}) \models \varphi$, for every $\varphi \in X$.

Definition 8.2 A formula β is a logical consequence of a formula α, denoted by $\alpha \models \beta$, if every model of α is also a model of β. If $\alpha \models \beta$ and $\beta \models \alpha$, we write $\alpha \equiv \beta$, or $\alpha \equiv \beta$.

One example is $\forall x \varphi \models \exists x \varphi$. (Recall that the domain of a structure is never empty.)

Definition 8.3 We say that α is a logical consequence of a set X of formulas, denoted by $X \models \alpha$, if every model of X is also a model of α. More formally, $X \models \alpha$ means that for every model $(\mathcal{A}, \text{val})$, if $(\mathcal{A}, \text{val}) \models X$, then $(\mathcal{A}, \text{val}) \models \alpha$.

We write $X \not\models \alpha$, if it is not the case that $X \models \alpha$.

Definition 8.4 A sentence φ is valid, if $\models \varphi$. In other words, φ is valid, if $\mathcal{A} \models \varphi$, for every structure \mathcal{A}.

Some conventions to read the notations:

- $(\mathcal{A}, \text{val}) \models X$ is read as “$(\mathcal{A}, \text{val})$ is a model of X.”
- $\alpha \models \beta$ is also read as “α implies β."
- $\alpha \equiv \beta$ is also read as “α and β are equivalent.”

Theorem 8.5 $X \models \varphi$ if and only if $X \cup \{\neg \varphi\}$ is not satisfiable.

Proposition 8.6 For every formulas α and β, the following holds.

$$
\neg \forall x \alpha \equiv \exists x \neg \alpha \\
\neg \exists x \alpha \equiv \forall x \neg \alpha \\
\alpha \land \forall x \beta \equiv \forall x(\alpha \land \beta) \quad \text{when } x \text{ is not free in } \alpha \\
\alpha \land \exists x \beta \equiv \exists x(\alpha \land \beta) \quad \text{when } x \text{ is not free in } \alpha
$$

Definition 8.7 Every formula is in Prenex Normal Form (PNF), if is is of the form:

$$Q_1x_1 \cdot \cdot \cdot Q_nx_n \varphi,$$

where φ is quantifier-free, and each $Q_i \in \{\forall, \exists\}$.

Theorem 8.8 Every formula is equivalent to another formula in PNF.

*Recall that $\models \varphi$ is the abbreviation for $\emptyset \models \varphi$.}
2 First-order theories

Definition 8.9

• A set T of sentences is called a *theory*, if it is closed under logical consequences, i.e., for every sentence φ, if $T \models \varphi$, then $\varphi \in T$.

• A theory T is *complete*, if for every sentence φ, either $\varphi \in T$ or $\neg \varphi \in T$.

Definition 8.10

• For a set X of sentences, $\text{Model}(X) := \{A \mid A \models X\}$.

• For a set X of sentences, $\text{Cn}(X) := \{\varphi \mid X \models \varphi\}$.

• For a set K of structures, $\text{Th}(K) := \{\varphi \mid \varphi \text{ holds in every structure in } K\}$.

Theorem 8.11 For a set K of structures, and a set X of sentences, the following holds.

• $K \subseteq \text{Model}(\text{Th}(K))$.

• $\text{Th}(K)$ is a theory.

• $\text{Cn}(X) = \text{Th}(\text{Model}(X))$.

Definition 8.12 A theory T is *finitely axiomatizable*, if there is a finite set Σ such that $T = \text{Cn}(\Sigma)$.

Remark 8.13 If $\text{Cn}(T)$ is finitely axiomatizable, then there is a finite subset $T_0 \subseteq T$ such that $\text{Cn}(T_0) = \text{Cn}(T)$.
Exercises

(1) Show that $\exists x \forall y \varphi \not\models \forall x \exists y \varphi$.

That is, give a model \mathcal{A} and a formula φ such that $\mathcal{A} \models \exists x \forall y \varphi$, but $\mathcal{A} \not\models \forall x \exists y \varphi$.

(2) Give a set \mathcal{K} of sentences such that $\mathcal{K} \not\models \text{Model}(\text{Th}(\mathcal{K}))$.

(3) Let $\mathcal{K} = \{A\}$, i.e., it consists of only one structure \mathcal{A}. Prove that $\text{Th}(\mathcal{K})$ is complete.

(4) Give a set \mathcal{K} of structures such that $\text{Th}(\mathcal{K})$ is not complete.

(5) Let T be a complete theory and let $\mathcal{A} \models T$. Prove that for every sentence α, $\mathcal{A} \models \alpha$ if and only if $T \models \alpha$.

We denote by $\mathcal{A} \cong \mathcal{B}$, if \mathcal{A} is isomorphic to \mathcal{B}, i.e., there is an isomorphism from \mathcal{A} to \mathcal{B}. Two structures \mathcal{A} and \mathcal{B} are elementarily equivalent, written as $\mathcal{A} \equiv \mathcal{B}$, if for every sentence φ,

$\mathcal{A} \models \varphi$ if and only if $\mathcal{B} \models \varphi$.

(6) Prove that if $\mathcal{A} \equiv \mathcal{B}$, then $\mathcal{A} \equiv \mathcal{B}$.

(7) Let \mathcal{K} be a set of structures such that for every $\mathcal{A}, \mathcal{B} \in \mathcal{K}$, we have $\mathcal{A} \cong \mathcal{B}$. Prove that $\text{Th}(\mathcal{K})$ is complete.

Appendix

The converse of question (6) does not hold in general. That is, $\mathcal{A} \equiv \mathcal{B}$ does not necessarily imply $\mathcal{A} \cong \mathcal{B}$. Consider, for example, the following two structures.

- $\mathcal{R} = (\mathbb{R}, <^\mathbb{R})$, where $<^\mathbb{R}$ is the standard ordering in \mathbb{R}.
- $\mathcal{Q} = (\mathbb{Q}, <^\mathbb{Q})$, where $<^\mathbb{Q}$ is the standard ordering in \mathbb{Q}.

It is known that $\mathcal{R} \equiv \mathcal{Q}$, but \mathcal{R} is not isomorphic to \mathcal{Q}, since \mathbb{R} is uncountable, but \mathbb{Q} is countable.

In general it is not a trivial matter to determine whether two structures are elementarily equivalent. It usually involves a technique called Ehrenfeucht-Fraïssé game, which we will not cover in this course.