Lesson 7: First-order logic, part II

Theme: The semantics of first-order logic.

1 Valuations

Recall that VAR is a set of variables. Let A be a structure.

- A \textit{valuation} in a structure A is a function \(\text{val} : \text{VAR} \to A \).

- For \(\bar{a} = (a_1, \ldots, a_n) \), where each \(a_i \in A \), and \(\bar{x} = (x_1, \ldots, x_n) \), where \(x_1, \ldots, x_n \) are all different variables, we write \(\text{val}[\bar{x} \mapsto \bar{a}] \) to denote the valuation \(\text{val}' \), where for every \(y \in \text{VAR} \),

\[
\text{val}'(y) = \begin{cases}
\text{val}(y), & \text{if } y \notin \{x_1, \ldots, x_n\} \\
\bar{a}_i, & \text{if } y = x_i
\end{cases}
\]

Sometimes we write \([\bar{x} \mapsto \bar{a}] \) to denote a valuation \(\text{val} \) such that \(\text{val}(x_i) = a_i \).

2 Interpretations/models

An \textit{interpretation} is a pair \((A, \text{val}) \), where A is a structure and \(\text{val} \) is a valuation. Quite often, interpretations are also called \textit{models}.

In an interpretation \((A, \text{val}) \), each term \(t \) is associated with an element \(t^A[\text{val}] \) defined inductively as follows.

- \(x^A[\text{val}] = \text{val}(x) \), where \(x \in \text{VAR} \).
- \(c^A[\text{val}] = c^A \), where \(c \) is a constant symbol.
- \(f(t_1, \ldots, t_n)^A[\text{val}] = f^A(t_1^A[\text{val}], \ldots, t_n^A[\text{val}]) \).

\(t^A[\text{val}] \) reads the term \(t \) in structure \(A \) according to valuation \(\text{val} \).

As usual, when the structure \(A \) is clear from the context, we will simply write \(t[\text{val}] \), instead of \(t^A[\text{val}] \).

Given an FO formula \(\varphi \), and an interpretation \((A, \text{val}) \), we define \((A, \text{val}) \models \varphi \) (read: \((A, \text{val}) \) is an interpretation/a model of \(\varphi \), or that \(\varphi \) holds in \((A, \text{val}) \)) inductively as follows.

- \((A, \text{val}) \models s \equiv t \), if and only if \(s^A[\text{val}] = t^A[\text{val}] \).
- \((A, \text{val}) \models R(t_1, \ldots, t_n) \), if and only if \((t_1^A[\text{val}], \ldots, t_n^A[\text{val}]) \in R^A \).
- \((A, \text{val}) \models \neg \alpha \), if and only if it is not true that \((A, \text{val}) \models \alpha \).
- \((A, \text{val}) \models \alpha \land \beta \), if and only if \((A, \text{val}) \models \alpha \) and \((A, \text{val}) \models \beta \).
- \((A, \text{val}) \models \alpha \lor \beta \), if and only if \((A, \text{val}) \models \alpha \) or \((A, \text{val}) \models \beta \).
- \((A, \text{val}) \models \exists x \alpha \), if and only if there is \(a \in A \) such that \((A, \text{val}[x \mapsto a]) \models \alpha \).
- \((A, \text{val}) \models \forall x \alpha \), if and only if for every \(a \in A \), \((A, \text{val}[x \mapsto a]) \models \alpha \).

We write \((A, \text{val}) \not\models \varphi \), when it is not true that \((A, \text{val}) \models \varphi \).

Note that whether \((A, \text{val}) \models \varphi(x_1, \ldots, x_n) \) depends only on \(A \) (obviously!) and the images of \(x_1, \ldots, x_n \) under \(\text{val} \). In other words, the value \(\text{val}(y) \) does not matter for every \(y \notin \{x_1, \ldots, x_n\} \).

To avoid clutter, we write \((A, a_1, \ldots, a_n) \models \varphi(x_1, \ldots, x_n) \), to mean that \((A, \text{val}) \models \varphi \), where \(\text{val} \) is a valuation function that maps each \(x_i \) to \(a_i \). In particular, if \(\alpha \) is a sentence, the valuation \(\text{val} \) is dispensable in the determination of \((A, \text{val}) \models \alpha \). So, for a sentence \(\alpha \), we simply write \(A \models \alpha \).

A formula \(\varphi \) is \textit{satisfiable}, if \(\varphi \) has an interpretation/model.
3 Some examples

Example 7.1 Let $\mathcal{A} = (A, \text{plus}^A, 0^A)$ be the structure with signature $\{\text{plus}, 0\}$ defined as follows.

- $A = \{0, 1, 2, \ldots, 8\}$,
- plus is a binary function/operator, where $\text{plus}^A(x, y) = x + y \mod 9$,
- $0^A = 0$.

Here are some formulas that hold/not hold in \mathcal{A}.

- $\mathcal{A}, (x, y, z) \mapsto (3, 5, 8) \models \text{plus}(x, y) \approx z$. Can I say that $\mathcal{A} \models \text{plus}(3, 5) \approx 8$?
- $\mathcal{A}, (x, y) \mapsto (1, 2) \not\models \text{plus}(x, y) \approx 0$.
 This is equivalent to say that $\mathcal{A}, (x, y) \mapsto (1, 2) \models \neg(\text{plus}(x, y) \approx 0)$, or, $\mathcal{A}, (x, y) \mapsto (1, 2) \models \neg\text{plus}(x, y) \neq 0$.
- $\mathcal{A}, z \mapsto 0 \models \forall x \text{plus}(x, z) \approx x$.
- $\mathcal{A}, z \mapsto 1 \models \forall x \text{plus}(x, z) \neq x$. Can I say that $\mathcal{A} \models \forall x \text{plus}(x, 1) \neq x$?
- $\mathcal{A} \models \forall x \text{plus}(x, 0) \approx x$.
- $\mathcal{A} \models \forall x \exists y \text{plus}(x, y) \approx 0$.
- $\mathcal{A} \models \forall x (x \neq 0 \rightarrow (\exists y x \neq y \land \text{plus}(x, y) \approx 0))$.

Example 7.2 Let $\mathcal{B} = (B, E^B)$ be the following structure, where $\text{ar}(E) = 2$:

- $B = \{a_1, b_1, \ldots, a_n, b_n\}$,
- $E^B = \{(a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n)\}$.

The relation E^B can be illustrated as follows.

```
  a1  b1
  |   |
  a2  b2
  |   |
   ..
  |   |
  an  bn
```

Here are some examples of formulas that hold/not hold in \mathcal{B}.

- $\mathcal{B}, (x, y) \mapsto (a_1, b_1) \models E(x, y)$. Can I say $\mathcal{B} \models E(a_1, b_1)$?
- $\mathcal{B}, (x, y) \mapsto (a_1, b_3) \not\models E(x, y)$.
- $\mathcal{B} \models \exists x \exists y E(x, y)$.
- $\mathcal{B} \not\models \exists x E(x, x)$, which can be rewritten as $\mathcal{B} \models \neg\exists x E(x, x)$
- $\mathcal{B} \models \forall x \exists y (E(x, y) \land \forall z (E(x, z) \rightarrow y \approx z))$.

2
Example 7.3 Let \(Z = (\mathbb{Z}, \text{succ}^Z, \text{plus}^Z, 0^Z) \) be the structure with signature \(\{ \text{plus}, \text{succ}, 0 \} \) defined as follows.

- \(\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \} \),
- \(\text{succ}^Z \) is a binary relation, where \((x, y) \in \text{succ}^Z \) if and only if \(y = x + 1 \),
- \(\text{plus}^Z \) is a binary operator, where \(\text{plus}^Z (x, y) = x + y \),
- \(0^Z = 0 \).

Here are some formulas that hold/not hold in \(Z \).

- \(Z, (x, y, z) \mapsto (3, 5, 8) \models \text{plus}(x, y) \approx z \).
- \(Z, (x, y) \mapsto (1, 2) \not\models \text{plus}(x, y) \approx 0 \).
- \(Z, z \mapsto 0 \models \forall x \text{ plus}(x, z) \approx x \).
- \(Z, z \mapsto 1 \models \forall x \text{ plus}(x, z) \not\approx x \).
- \(Z \models \forall x \text{ plus}(x, 0) \approx x \).
- \(Z \models \forall x \exists y \text{ plus}(x, y) \approx 0 \).
- \(Z \models \forall x \exists y \text{ succ}(x, y) \land x \not\approx y \).
- \(Z \models \forall x \exists y \text{ succ}(x, y) \land \left(\forall z (\text{succ}(x, z) \rightarrow y \approx z) \right) \).
- \(Z \models \forall x \forall y \forall z \forall w \left((\text{succ}(x, z) \land \text{succ}(w, y)) \rightarrow \text{plus}(x, y) \approx \text{plus}(z, w) \right) \).

4 Two little theorems

Theorem 7.4 Let \(h : A \rightarrow B \) be an isomorphism. Then, for every formula \(\varphi(\bar{x}) \),

\[(A, \bar{a}) \models \varphi(\bar{x}) \quad \text{if and only if} \quad (B, h(\bar{a})) \models \varphi(\bar{x}) \]

(Recall that \(\bar{x} \) and \(\bar{a} \) stands for a vector of variables and elements, respectively, which we tacitly assume to be of the same length.)

A \(\forall \)-sentence (read: a universal sentence) is a sentence of the form:

\[
\forall x_1 \cdots \forall x_n \varphi, \quad (1)
\]

where \(\varphi \) is quantifier free. Likewise, an \(\exists \)-sentence (read: an existential sentence) is a sentence of the form:

\[
\exists x_1 \cdots \exists x_n \varphi, \quad (2)
\]

where \(\varphi \) is quantifier free. As usual, we will simply write \(\forall \bar{x} \varphi \) or \(\exists \bar{x} \varphi \), instead of Eq. (1) and (2), respectively.

Theorem 7.5 Let \(A \subseteq B \).

- For every \(\forall \)-sentence \(\psi \), if \(B \models \psi \), then \(A \models \psi \).
- For every \(\exists \)-sentence \(\psi \), if \(A \models \psi \), then \(B \models \psi \).
Exercise set 1

In the following E, R, T, S are relational symbols, f, g are function symbols and c, c_1, c_2, \ldots are constant symbols.

(1) Determine the quantifier rank of each of the following formulas.

\[
\begin{align*}
\beta_1 & := \forall x \exists y (z \neq y \land R(x, y)) \\
\beta_2 & := \forall x (x \neq y \land \exists y R(x, y)) \\
\beta_3 & := \left(\forall z (\exists z z \neq y) \right) \land f(z) \approx z \\
\beta_4 & := \forall z \left(z \approx y \land \exists z (f(z) \approx g(z)) \right) \\
\beta_5 & := \exists y \forall x (R(z, g(z, y)) \land T(y) \rightarrow \exists z \forall y x \approx f(x, g(y, z))) \\
\beta_6 & := x \neq f(c, z) \land \forall z \forall x \left(R(x, c, c, y) \land f(x, z) \approx c \land \exists y (f(x, y) \land g(z, y)) \right)
\end{align*}
\]

(2) Determine the free variables of each of the formulas above.

(3) Determine the result of each of the following substitutions.

- $z/f(z, z, x)$ in β_1.
- $y/g(c, c)$ in β_2.
- $z/f(x, y, z)$ in β_3.
- y/z in β_4.
- $z/f(c, z, x)$ in β_5.
- $(x, y, z)/(x, x, x)$ in β_6.

Which substitutions are collision-free?

Exercise set 2: The notion of congruence

In this exercise, we will study the notion of congruence on structures. Let Z be set, and \sim be an equivalence relation on Z. For a positive integer n, define a binary relation \sim^n on Z^n as follows.

\[(a_1, \ldots, a_n) \sim^n (b_1, \ldots, b_n) \text{ if and only if } a_i \sim b_i, \text{ for each } i \in \{1, \ldots, n\}.\]

(4) Prove that \sim^n is an equivalence relation.

The relation \sim^n is called the extension of \sim to Z^n.

(5) Prove that $[\bar{a}]_\sim^n = [a_1]_\sim \times [a_2]_\sim \times \cdots \times [a_n]_\sim$, where $\bar{a} = (a_1, \ldots, a_n)$.

When it is clear from the context, we will simply use the same symbol \sim, instead of \sim^n. That is, we will write $\bar{a} \sim \bar{b}$ to mean the extension of \sim to Z^n, instead of $\bar{a} \sim^n \bar{b}$.

Let \mathcal{A} be an L-structure. A congruence in \mathcal{A} is an equivalence relation \sim on A such that for every function symbol $f \in L$, the following holds.

\[\text{If } \bar{a} \sim \bar{b}, \text{ then } f(\bar{a}) \sim f(\bar{b}).\]

(6) Let \sim be a congruence in an L-structure \mathcal{A}. The factor of \mathcal{A} modulo \sim is a structure \mathcal{B} such that

- $B = A/\sim = \{ [a]_\sim \mid a \in A \}$,
Consider a sentence

\[\exists x \exists y \exists z \varphi \]

Pick \(n \) "new" constant symbols \(c_1, \ldots, c_n \notin L \). Show that \(\varphi[(x_1, \ldots, x_n)/(c_1, \ldots, c_n)] \) and \(\psi \) are equi-satisfiable.

Consider a sentence \(\psi \) over a vocabulary \(L \) of the form:

\[\forall x_1 \cdots \forall x_n \exists y \varphi \]

Pick a "new" arity \(n \) function symbol \(f \notin L \). Show that \(\forall x_1 \cdots \forall x_n \varphi[y/f(x_1, \ldots, x_n)] \) and \(\psi \) are equi-satisfiable.

Consider a sentence \(\psi \) over a vocabulary \(L \) of the form:

\[\forall x_1 \cdots \forall x_n \exists y_1 \cdots \exists y_m \varphi, \]

where \(\varphi \) does not start with existential quantifiers. Prove that there is a sentence of the form:

\[\psi' := \forall x_1 \cdots \forall x_n \varphi' \]

such that \(\varphi' \) does not start with existential quantifiers, and \(\psi \) and \(\psi' \) are equi-satisfiable.

(Skolem normal form) Consider a sentence \(\psi \) over a vocabulary \(L \) of the form:

\[\psi := Q_1 x_1 \cdots Q_n x_n \varphi, \quad (3) \]

where each \(Q_i \) is a quantifier (either \(\forall \) or \(\exists \)), and \(\varphi \) is quantifier free. Prove that there is \(\forall \)-sentence \(\psi' \) (over different vocabulary \(L' \)) such that \(\psi \) and \(\psi' \) are equi-satisfiable.

Note 1: The \(\forall \)-sentence \(\psi' \) is called the Skolem normal form of \(\psi \).

Note 2: Formulas of the form \((3) \) are often called formulas in Prenex Normal Form (PNF). We will show later on that every formula can be converted into PNF.