Lesson 1: Preliminaries

Theme: Some useful notations and facts from discrete mathematics.

1 Sets

- A set is a collection of things, which are called its members or elements.\n \(a \in X \) (read: \(a \) is in \(X \), or \(a \) belongs to \(X \)) means \(a \) is a member or an element of \(X \). \(a \notin X \) means that \(a \) is not a member of \(X \).
- An empty set is denoted by \(\emptyset \).
- \(X \) is a subset of \(Y \), denoted by \(X \subseteq Y \), if every element of \(X \) is also an element of \(Y \).
- \(X \) is a proper subset of \(Y \), denoted by \(X \subset Y \), if \(X \neq Y \) and \(X \subseteq Y \).
- For two sets \(X \) and \(Y \), we write \(X \cap Y \) and \(X \cup Y \) to denote their intersection and union, respectively.
- Let \(X \) be a set whose elements are also sets. Then, \(\bigcup X \) and \(\bigcap X \) denote the following.
 \[
 \bigcup X := \{ a \mid a \text{ belongs to an element in } X \}
 \]
 \[
 \bigcap X := \{ a \mid a \text{ belongs to every element in } X \}
 \]
- The cartesian product between two sets \(X \) and \(Y \) is the following.
 \[
 X \times Y := \{ (a, b) \mid a \in X \text{ and } b \in Y \}.
 \]
 We write \(X^n \) to denote \(X \times \cdots \times X \) (\(X \) appears \(n \) times).

2 Relations

- A relation \(R \) over two sets \(X, Y \) is a subset of \(X \times Y \).
- A binary relation \(R \) over \(X \) is a subset of \(X \times X \).
- An \(n \)-ary relation \(R \) over \(X \) is a subset of \(X^n \).

3 Functions

- A relation \(R \) over \(X, Y \) is a function or a mapping, if for every \(x \in X \), there is exactly one \(y \in Y \) such that \((x, y) \in R \).
 In this case, we will say \(R \) is a function from \(X \) to \(Y \), or \(R \) maps \(X \) to \(Y \). We denote it by \(R : X \to Y \).
- We will usually use the letters \(f, g, h, \ldots \) to represent functions. As usual, we write \(f(x) \) to denote the element \(y \) in which \((x, y) \in f \).
- A function \(f : X \to Y \) is an injective function, if for every \(y \in Y \), there is at most one \(x \in X \) such that \(f(x) = y \). An injective functions is also called an injection.
- A function \(f : X \to Y \) is a surjective function, if for every \(y \in Y \), there is at least one \(x \in X \) such that \(f(x) = y \).
- A function \(f : X \to Y \) is a bijection, if it is both injective and surjective.
4 Equivalence relations

A binary relation R over X is called an equivalence relation, if it satisfies the following conditions.

- Reflexive: $(x, x) \in R$, for every $x \in X$.
- Symmetric: $(x, y) \in R$ if and only if (y, x), for every $x, y \in X$.
- Transitive: for every $x, y, z \in X$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

For $x \in X$, the equivalence class of x in R is defined as:

$$[x]_R := \{ y \mid (x, y) \in R \}$$

Lemma 1.1 Let R be an equivalence relation over X. Then, the following holds:

- $[x]_R = [y]_R$ if and only if $(x, y) \in R$.
- If $[x]_R \neq [y]_R$, then $[x]_R \cap [y]_R = \emptyset$.

Theorem 1.2 Let R be an equivalence relation over X. Then, the equivalence classes of R partition X, i.e., every member of X belongs to exactly one equivalence class of R.

5 Countable and uncountable sets

Let \mathbb{N} be the set of natural numbers $\{0, 1, 2, \ldots \}$. A set X is countable, if there is an injective function from X to \mathbb{N}. Otherwise, it is called an uncountable set.

Theorem 1.3 The following sets are all countable.

1. The set $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots \}$ of integers.
2. The set \mathbb{N}^k, for every integer $k \geq 1$.
3. The set $\mathbb{N}^* := \bigcup_{k \geq 1} \mathbb{N}^k$.

Theorem 1.4 The set $\mathcal{P}^\mathbb{N}$ is uncountable.

6 Poset (partially ordered set)

Let X be a set and R be a binary relation on X. The set X is a poset (w.r.t. R), if R is reflexive, anti-symmetric and transitive.

Definition 1.5 An element $m \in X$ is a maximal element in a poset X (w.r.t. R), if for every $x \in X$ and $x \neq m$, $(m, x) \notin R$.

Definition 1.6 A subset C of X is a chain in X (w.r.t. R), if for every $x, y \in C$, either $(x, y) \in R$, or $(y, x) \in R$. A chain C is bounded, if there is $z \in X$ such that for every $x \in C$, $(x, z) \in R$.

*A binary relation R on X is anti-symmetric, if the following holds: for every $a, b \in X$, if both (a, b) and (b, a) are in R, then $a = b$.

Exercises

(1) Let A and B be sets.

Prove that $x \not\in A \cup B$ if and only if $x \not\in A$ and $x \not\in B$, and in particular, $\overline{A \cup B} = \overline{A} \cap \overline{B}$, where \overline{X} denotes the complement of X, i.e., the set of elements not in X.

Likewise, prove that $x \not\in A \cap B$ if and only if $x \not\in A$ or $x \not\in B$, and in particular, $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

(2) Prove Lemma 1.1 and Theorem 1.2.

(3) Prove Theorem 1.3 in the lecture note.

(4) Prove Theorem 1.4 in the lecture note.

(5) Let \mathbb{R} be the set of real numbers. Define a relation R, where $(x, y) \in R$ if and only if $x < y$.

Prove that \mathbb{R} is a poset w.r.t. R.

(6) Give an example of a bounded chain in the poset (\mathbb{R}, \leq) as defined in question 4.

(7) Give an example of an unbounded chain in the poset (\mathbb{R}, \leq).

(8) Let A be a set and \mathcal{F} be a collection of subsets of A. Define a relation R on elements of \mathcal{F}:

$$(x, y) \in R \text{ if and only if } x \subseteq y$$

Prove that \mathcal{F} is a poset w.r.t. R.

(9) Give an example of a poset (\mathcal{F}, \subseteq) in which every chain is bounded.

(10) Give an example of a poset (\mathcal{F}, \subseteq) in which there is an unbounded chain.

(11) Consider a poset (\mathcal{F}, \subseteq) where \mathcal{F} is a collection of subsets of a set A. Suppose that for every chain C in \mathcal{F}, the set $\bigcup C$ is in \mathcal{F}.

Assuming Zorn’s lemma, prove that there is an element $M \in \mathcal{F}$ such that there is no $X \in \mathcal{F}$ where $M \subsetneq X$.

†The poset \mathbb{R} w.r.t. the relation \leq is usually written as (\mathbb{R}, \leq).

‡The poset \mathcal{F} w.r.t. the relation \subseteq is usually written as (\mathcal{F}, \subseteq).
Appendix

The three statements below are equivalent and they are usually taken as “axioms” in mathematics.

Axiom of choice: Let I be a set such that each $i \in I$ is associated with a set A_i. There is a function $f : I \to \bigcup A_i$ such that for every $i \in I$, $f(i) \in A_i$.

Zorn’s lemma: Let (A, R) be a poset such that every chain in A is bounded. There is an element $m \in A$ such that for every $x \in A$ and $x \neq m$, $(m, x) \notin R$.

Well-ordering theorem: Every set can be well-ordered. That is, for every set A, there is a total order relation R on A, that is, it satisfies the following conditions:

- Antisymmetry: for every $a, b \in A$, if $(a, b), (b, a) \in R$, then $a = b$;
- Transitive: if $(a, b), (b, c) \in R$, then $(a, c) \in R$;
- Totality: for every $a, b \in A$, either $(a, b) \in R$ or $(b, a) \in R$,

such that for every nonempty subset $B \subseteq A$ has a minimal element (w.r.t. R).

There is a kind of contradiction here: the axiom of choice is viewed as obviously “correct,” while the well-ordering theorem is obviously “false,” and there are mixed opinions about Zorn’s lemma.