Homework 4: due 10:30 am, 14 June 2018

In the following in writing FO formula you can use any logical operators: \(\land, \lor, \neg, \to, \leftrightarrow \), etc, as well as both quantifiers: \(\forall \) and \(\exists \).

Question 1. Prove that for every set \(X \) of sentences, \(X \) is satisfiable if and only if \(X \) is consistent.

Question 2. Prove the compactness theorem for first-order logic. That is, prove that a set \(X \) is satisfiable if and only if \(X \) is finitely satisfiable.

Question 3. For a set \(X \) of sentences, we say that \(X \) has arbitrarily large models, if for every positive integer \(n \), \(X \) has a finite model of cardinality \(\geq n \). Prove that if \(X \) has arbitrarily large models, then \(X \) has an infinite model.

Question 4. Let \(\Sigma \) be a set of sentences. Prove that if \(C_n(\Sigma) \) is finitely axiomatizable, then there is a finite subset \(\Sigma_0 \subseteq \Sigma \) such that \(C_n(\Sigma) = C_n(\Sigma_0) \).

Question 5. Consider a vocabulary \(L = \{E, s, t\} \), where \(E \) is a relation symbol of arity 2, and \(s, t \) are constant symbols. Every structure over \(L \) can be viewed as a graph \(\mathcal{A} = (A, E^\mathcal{A}, s^\mathcal{A}, t^\mathcal{A}) \) where \(A \) is the set of vertices, \(E^\mathcal{A} \) the set of edges, and \(s^\mathcal{A}, t^\mathcal{A} \) are two special nodes in \(\mathcal{A} \).

For integer \(k \geq 0 \), a path from \(s^\mathcal{A} \) to \(t^\mathcal{A} \) of length \(k \) in the graph \(\mathcal{A} \) is a sequence of vertices \(v_0, v_1, \ldots, v_k \) such that \(v_0 = s^\mathcal{A}, v_k = t^\mathcal{A} \) and for each \(i = 1, \ldots, k \), \((v_{i-1}, v_i) \in E^\mathcal{A} \). We say that a path is of finite length, if it is of length \(k \) for some integer \(k \geq 0 \).

- Show that for every integer \(k \geq 0 \), there is \(\phi_k \in \text{FO}[L] \) such that for every graph \(\mathcal{A} \):

 \[\mathcal{A} \models \phi_k \text{ if and only if there is a path of length } \leq k \text{ from } s^\mathcal{A} \text{ to } t^\mathcal{A} \text{ in the graph } \mathcal{A}. \]

- Prove that there is no \(\Psi \in \text{FO}[L] \) such that for every graph \(\mathcal{A} \):

 \[\mathcal{A} \models \Psi \text{ if and only if there is a path of finite length from } s^\mathcal{A} \text{ to } t^\mathcal{A} \text{ in the graph } \mathcal{A}. \]

In other words, there is no FO sentence that expresses graph reachability.

Hint: Use compactness theorem for FO.