Homework 3: due 10:30 am, 3 May 2018

Question 1. Construct a structure A and a formula φ such that $A \models \forall x \exists y \varphi$, but $A \not\models \exists x \forall y \varphi$.

Question 2. There are many ways to “encode” propositional calculus in first-order logic. One way is to view a propositional variable p as a relation symbol of arity 0 as explained in the class.

Here is another way. Let $L = \{c\}$ be a vocabulary that consists of only one constant symbol c. Given a propositional formula α using variables p_1, \ldots, p_k, consider the FO formula Φ obtained from α by changing every p_i with an atomic $x_i \approx c$. For example, if α is

$$p_1 \land \neg p_2,$$

then Φ is

$$(x_1 \approx c) \land \neg (x_2 \approx c).$$

Prove that α is satisfiable (in the sense of propositional calculus) if and only if Φ is.

Question 3. Consider a sentence of the following form:

$$\Phi := \exists x_1 \cdots \exists x_n \forall y_1 \cdots \forall y_m \varphi,$$

where φ is quantifier free and does not contain any function and constant symbol, and $n, m \geq 1$.

Prove that if Φ is satisfiable, then there is a structure A that satisfies Φ with $|A| \leq n$.

Question 4. Let $h : A \to B$ be a homomorphism. Define a relation \sim_h on A as follows: $a \sim_h a'$ if and only if $h(a) = h(a')$. Prove that \sim_h is an equivalence relation on A, and that \sim_h is, in fact, a congruence in A.

Question 5. Let $h : A \to B$ be a strong and surjective homomorphism, and let A/\sim_h be the factor of A modulo \sim_h. Define a function $\xi : A/\sim_h \to B$, where $\xi([a]_{\sim_h}) = h(a)$. Prove that ξ is an isomorphism.