Lesson 11: Discrepancy

Theme: The notion of discrepancy for establishing lower bounds on distributional complexity.

Let $f : X \times Y \to \{0, 1\}$, and let μ be a probability distribution on $X \times Y$. Let R be a rectangle (not necessarily monochromatic) in $X \times Y$. The discrepancy of f on R according to μ is defined as follows.

$$\text{Disc}_\mu(R, f) := \left| \Pr_\mu[f(x, y) = 0 \text{ and } (x, y) \in R] - \Pr_\mu[f(x, y) = 1 \text{ and } (x, y) \in R] \right|$$

The discrepancy of f according to μ is defined as follows.

$$\text{Disc}_\mu(f) := \max_{R \text{ is a rectangle}} \text{Disc}_\mu(R, f)$$

Theorem 11.1 For every function $f : X \times Y \to \{0, 1\}$, for every probability distribution μ on $X \times Y$, for every $0 \leq \epsilon \leq 1/2$,

$$D_{1/2-\epsilon}^\mu(f) \geq \log_2 \left(\frac{2\epsilon}{\text{Disc}_\mu(f)} \right)$$

Recall the function $\text{ip} : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}$, where $\text{ip}(x, y)$ is the inner product of x and y modulo 2.

Theorem 11.2 $\text{Disc}_{\mu_0}(\text{ip}) = 2^{-n/2}$, where μ_0 is the uniform distribution on $\{0, 1\}^n \times \{0, 1\}^n$. Thus, $D_{1/2-\epsilon}^\mu(\text{ip}) \geq n/2 - \log(1/\epsilon)$.

Corollary 11.3 $R_{1/2-\epsilon}^{\text{pub}}(\text{ip}) \geq n/2 - \log(1/\epsilon)$.