Sample solution for midterm

(1) Consider the following automaton A.

(i) Is A deterministic or non-deterministic?
 Ans: Non-deterministic.

(ii) Is aaa accepted by A?
 Ans: No.

(iii) Is $ababababa$ accepted by A?
 Ans: Yes.

(iv) Construct the deterministic automaton for A.
 Ans:

(2) Construct a DFA for the following language over the alphabet $\{0, 1\}$:

$$L_0 := \{w \mid w \text{ represents an integer divisible by 3}\}.$$

Ans: First, we calculate the following:

- $2 \cdot 0 + 0 \equiv 0 \pmod{3}$
- $2 \cdot 1 + 0 \equiv 2 \pmod{3}$
- $2 \cdot 2 + 0 \equiv 1 \pmod{3}$
- $2 \cdot 0 + 1 \equiv 1 \pmod{3}$
- $2 \cdot 1 + 1 \equiv 0 \pmod{3}$
- $2 \cdot 2 + 1 \equiv 2 \pmod{3}$

Then, we can construct a DFA with three states q_0, q_1, q_2 corresponding to 0, 1, 2, respectively.
(3) Construct the CFG for each of the following languages.

- \(L_1 := \{ w \# w^R \# \mid w \in \{0,1\}^* \} \)

 Ans: \(L_1 \) can be generated by the following grammar with \(S \) being the start variable.

 \[
 S \rightarrow X\#
 \]

 \[
 X \rightarrow \# \mid 0X0 \mid 1X1
 \]

- \(L_2 := \{ w_1 \# w_1^R \# w_2 \# w_2^R \# \cdots \# w_k \# w_k^R \# \mid \text{each } w_i \in \{0,1\}^* \text{ for some } k \geq 1 \} \)

 Ans: \(L_2 \) can be generated by the following grammar with \(T \) being the start variable.

 \[
 T \rightarrow ST \mid S
 \]

 \[
 S \rightarrow X\#
 \]

 \[
 X \rightarrow \# \mid 0X0 \mid 1X1
 \]

(4) Prove or disprove the following.

- If \(L \) is regular and \(K \) is CFL, then \(L \cap K \) is regular.

 Ans: The statement is wrong. Consider the following languages \(L \) and \(K \).

 \[
 L := \{ a^n b^n \mid n \geq 0 \}
 \]

 \[
 K := \Sigma^*
 \]

 We have learned that \(L \) is CFL, but not regular, while \(K \) is obviously regular. Thus, \(L \cap K = L \) is not regular.

- If \(L \) is regular and \(K \) is CFL, then \(L \cup K \) is regular.

 Ans: The statement is wrong. Consider the following languages \(L \) and \(K \).

 \[
 L := \{ a^n b^n \mid n \geq 0 \}
 \]

 \[
 K := \emptyset
 \]

 We have learned that \(L \) is CFL, but not regular, while \(K \) is obviously regular. Thus, \(L \cup K = L \) is not regular.

(5) Prove that if \(L \) is regular, then \(\text{half}(L) \) is also regular.

Ans: Suppose \(L \) is regular and is accepted by a DFA \(A = (\Sigma, Q, q_0, F, \delta) \).

Consider the following \(\epsilon \)-NFA \(A' = (\Sigma, Q', q'_0, F', \delta') \).

- \(Q' = Q \times Q \cup \{ p \} \), where \(p \notin Q \).
- \(q'_0 = p \).
- \(F = \{(q, q) \mid q \in Q \} \).
- \(\delta' \) is the following set of transitions.

 \[
 \delta' = \{(p, \epsilon, (q_0, q_f)) \mid q_f \in F \}
 \cup \{(q_1, q_2), a, (q'_1, q'_2) \mid (q_1, a, q_2) \in \delta \text{ and } (q'_2, b, q_2) \in \delta \text{ for some } b \in \Sigma \}
 \]

 The idea is that on input word \(c_1 \cdots c_n \), \(A' \) simulates \(A \) both “going forward” from the initial state \(q_0 \) and “going backward” from one of the final states \(q_f \in F \).
We will prove that \(L(\mathcal{A}') = \text{half}(L) \). If a word \(c_1c_2 \cdots c_n d_1 \cdots d_n \) is accepted by \(\mathcal{A} \), where each \(c_i, d_i \in \Sigma \), with an accepting run:

\[
q_0 \ c_1 \ q_1 \ \cdots \ q_{n-1} \ c_n \ q_n \ d_n \ q_{n+1} \ \cdots \ q_{2n-1} \ d_n \ q_{2n}, \quad \text{where } q_{2n} \in F;
\]

then the following is a run of \(\mathcal{A}' \) on \(c_1c_2 \cdots c_n \) by definition of \(\delta' \):

\[
p \in (q_0, q_{2n}) \ c_1 (q_1, q_{2n-1}) \ \cdots \ (q_{n-1}, q_{n+1}) \ c_n (q_n, q_n).
\]

Since \((q_n, q_n) \in F \), the word \(c_1 \cdots c_n \) is accepted by \(\mathcal{A}' \).

Vice versa, if \(c_1c_2 \cdots c_n \) is accepted by \(\mathcal{A}' \), the accepting run must be of the form:

\[
p \in (q_0, q_{2n}) \ c_1 (q_1, q_{2n-1}) \ \cdots \ (q_{n-1}, q_{n+1}) \ c_n (q_n, q_n), \quad \text{where } q_{2n} \in F.
\]

By definition of \(\delta' \), we have the following run on some \(d_1 \cdots d_n \):

\[
q_n \ d_1 \ q_{n+1} \ \cdots \ q_{2n-1} \ d_n \ q_{2n}
\]

This means there is a run of \(\mathcal{A} \) on \(c_1 \cdots c_n d_1 \cdots d_n \):

\[
q_0 \ c_1 \ q_1 \ \cdots \ q_{n-1} \ c_n \ q_n \ d_n \ q_{n+1} \ \cdots \ q_{2n-1} \ d_n \ q_{2n}
\]

Since \(q_{2n} \in F \), \(c_1 \cdots c_n d_1 \cdots d_n \) is accepted by \(\mathcal{A} \). Therefore, \(\mathcal{A}' \) accepts \(\text{half}(L) \).