Sample solution to HW 2

(1) (i) \(a^3b^3\) is in \(L(G)\) with derivation tree:

(ii) \(a^2b^3\) is not in \(L(G)\). (See question (4).)

(iii) \(abba\) is not in \(L(G)\). (See question (4).)

(iv) \(a^2b^3a^3b^3\) is in \(L(G)\) with derivation tree:

(v) \(baababba\) is not in \(L(G)\). (See question (4).)

(2) (i) \(L_1 = \{a^mb^n \mid m > n\}\) can be generated by the CFG \(G\) with the set of variables \(V = \{S,T\}\), \(S\) is the start variable, and \(R\) contains the following rules:

\[
S \rightarrow aS \mid aT \\
T \rightarrow aTb \mid \epsilon
\]

(ii) \(L_2 = \{a^mb^n \mid n > m\}\) can be generated by the CFG \(G\) with the set of variables \(V = \{S,T\}\), \(S\) is the start variable, and \(R\) contains the following rules:

\[
S \rightarrow Sb \mid Tb \\
T \rightarrow aTb \mid \epsilon
\]

(iii) \(L_3 = \{a^{2n}b^n \mid n \geq 0\}\) can be generated by the CFG \(G\) with the set of variables \(V = \{S\}\), \(S\) is the start variable, and \(R\) contains the following rules:

\[
S \rightarrow aaSb \mid \epsilon
\]
(iv) \(L_4 = \{w^R \mid w \in \{a,b\}^*\}\) can be generated by the CFG \(G\) with the set of variables \(V = \{S, T\}\), \(S\) is the start variable, and \(R\) contains the following rules:

\[
\begin{align*}
S & \to T$ \\
T & \to aTa \mid bTb \mid $
\end{align*}
\]

(v) \(L_5\) is the complement of the language \(\{a^nb^n \mid n \geq 0\}\) over the alphabet \(\{a, b\}\). More formally, \(L_5 = \Sigma^* - \{a^nb^n \mid n \geq 0\}\), where \(\Sigma = \{a, b\}\).

A word \(w \in \Sigma^*\) is not in \(\{a^nb^n \mid n \geq 0\}\), if it satisfies one of the following conditions.

- In \(w\) some \(a\) appears after \(b\), and such a word can be generated by the following rules:

\[
\begin{align*}
A & \to ZbaZ \\
Z & \to aZ \mid bZ \mid \epsilon
\end{align*}
\]

Here the purpose of the variable \(Z\) is to generate arbitrary word.

- \(w\) is of the form: \(a^mb^n\), where \(m > n\), i.e., \(w \in L_1\) defined in (i) above.

Renaming the variables, we get the following rules to generate \(L_1\):

\[
\begin{align*}
B & \to aB \mid aC \\
C & \to aCb \mid \epsilon
\end{align*}
\]

- \(w\) is of the form: \(a^mb^n\), where \(m < n\), i.e., \(w \in L_2\) defined in (ii) above.

Renaming the variables, we get the following rules to generate \(L_2\):

\[
\begin{align*}
D & \to Db \mid Eb \\
E & \to aEb \mid \epsilon
\end{align*}
\]

We can combine the all the rules above to get the following grammar that generates the complement of \(\{a^nb^n \mid n \geq 0\}\):

- \(\Sigma = \{a, b\}\).
- \(V = \{S, A, B, C, D, E, Z\}\).
- \(S\) is the start variable.
- \(R\) consists of all the rules above, as well as the rule:

\[
\begin{align*}
S & \to A \mid B \mid D \\
A & \to ZbaZ \\
Z & \to aZ \mid bZ \mid \epsilon \\
B & \to aB \mid aC \\
C & \to aCb \mid \epsilon \\
D & \to Db \mid Eb \\
E & \to aEb \mid \epsilon
\end{align*}
\]

(3) Show that the following languages are not CFL.

(i) \(L_1 = \{a^kb^mc^n \mid k \leq m \leq n\}\) is not CFL.

The proof is via pumping lemma. Suppose to the contrary that \(L_1\) is CFL. Let \(\mathcal{G} = (\Sigma, V, R, S)\) be its CFG.

Consider the word \(w = a^kb^kc^k\), where \(k \geq M|R| + 1\) and \(M\) is the maximal length of the rule in \(R\). By pumping lemma, there is a partition \(w = sx_0yzt\) such that \(|x| + |z| \geq 1\) and for each \(i \geq 0\), \(v sx_0yzt w \in L(\mathcal{G})\). There are a few cases.
(a) If either x or z consists of more than two symbols, then by pumping lemma, either some a’s will appear after some b’s or c’s, or some c’s will appear after some b’s or a’s. This violates the criteria for a word to be in L_1.

(b) If both x and z do not contain c, then the number of c’s in sx^2yz^2t will be less than either the number of a’s or b’s. This violates the criteria for a word to be in L_1.

(c) If one of x or z contains c, then the number of c’s in sx^0yz^0t will be less than either the number of a’s or b’s.

Again, this will violate the criteria for a word to be in L_1.

Therefore, we conclude that L_1 is not CFL.

(ii) $L_2 = \{a^n \mid n \text{ is a prime number} \}$

Again, the proof is via pumping lemma. Suppose to the contrary that L_2 is CFL. Let $G = \langle \Sigma, V, R, S \rangle$ be its CFG.

Consider the word a^n, where $M[R] + 1 \leq m \leq n$ and M is the maximal length of the rule in R. By pumping lemma, there is a partition $sxyzt$ such that $|x| + |z| \geq 1$ and for each $i \geq 0$, $sx^iyyz^it \in L(G)$. Now, $|sx^iyyz^it| = |s| + |y| + |t| + i(|x| + |z|)$.

If $|s| + |y| + |t| = 0$, the length $|sx^iyyz^it|$ is $|x^iz^i| = i(|x| + |z|)$, which is not a prime number. So, suppose $|s| + |y| + |t| \neq 0$, in which case, if we take $i = |s| + |y| + |t|$, the length of the word $v sx^iyyz^it$ is $(|x| + |z| + 1)(|s| + |y| + |t|)$, which again is not a prime number. Thus, it contradicts the fact that $v sx^iyyz^it \in L(G)$, for each $i \geq 0$, and therefore, L_2 is not CFL.

(4) Consider the grammar defined in (1). Prove that $w \in L(G)$ if and only if every prefix of w has at least as many a’s as b’s.

Proof: We first prove the “only if” direction. Suppose $w \in L(G)$. The proof is by induction on the length of the derivation of w. The base case is when the length is 1, which implies that $w = \epsilon$, which is trivial. For the induction hypothesis, we assume that it holds for the all words $w \in L(G)$ with the length of derivation $\leq m - 1$.

For the induction step, suppose $w \in L(G)$ with the following derivation of length m:

$$S \Rightarrow u_1 \Rightarrow \cdots \Rightarrow u_m, \quad \text{where} \quad u_m = w.$$

There are two cases:

- The first rule applied is $S \rightarrow aS$, i.e., $u_1 = aS$.

 Then, $w = aw'$, and w' has derivation with length $m - 1$. By the induction hypothesis, every prefix of w' has at least as many a’s as b’s, and hence, so does every prefix of w.

- The first rule applied is $S \rightarrow aSbS$, i.e., $u_1 = aSbS$.

 Then, $w = aw_1bw_2$, and w_1, w_2 have derivations with length $\leq m - 1$. By the induction hypothesis, every prefix of w_1 and w_2 has at least as many a’s as b’s, and hence, so does every prefix of w.

This completes the proof of the “only if” direction.

Now we will prove the “if” direction by induction on the length of w. The base case is when $w = \epsilon$, which is trivial.

For the induction hypothesis, we assume that it holds for every word of length $\leq m - 1$. The induction step is as follows. Let w be a word of length m such every prefix of w has at least as many a’s as b’s.
Let \(w = d_1d_2\cdots d_m \), i.e., the symbol in position \(i \) is denoted by \(d_i \). We define a function \(f_w : \{1, \ldots, m\} \rightarrow \{1, \ldots, m\} \) as follows.

\[
f_w(i) = (\text{the number of } a's \text{ in } d_1 \cdots d_i) - (\text{the number of } b's \text{ in } d_1 \cdots d_i)
\]

The following claim is straightforward:

Claim 1 Every prefix of \(w \) has at least as many \(a's \) as \(b's \) if and only if \(f_w(i) \geq 0 \) for every \(i = 1, \ldots, m \).

Coming back to the proof, there are two cases.

- There is \(1 \leq k \leq m \) such that \(f_w(k) = 0 \).
 Let \(w_1 = d_1 \cdots d_k \) and \(w_2 = d_{k+1} \cdots d_m \). This implies that:
 - \(f_{w_1}(i) \geq 0 \), for every \(i = 1, \ldots, |w_1| \).
 - \(f_{w_2}(i) \geq 0 \), for every \(i = 1, \ldots, |w_2| \).
 By Claim 1, every prefix of the words \(w_1 \) and \(w_2 \) has at least as many \(a's \) as \(b's \). By the induction hypothesis, \(w_1, w_2 \in L(\mathcal{G}) \). Thus, we have derivations

 \[
 S \Rightarrow^* w_1 \\
 S \Rightarrow^* w_2
 \]

Now, we claim that \(w_1 \) starts with \(a \) and ends with \(b \). That it starts with \(a \) is obvious. If it ends with \(a \), we have \(f_w(k) = f_w(k-1) + 1 \). Since \(f_w(k) = 0 \), we will have \(f_w(k-1) = -1 \), which contradicts the assumption about \(w \). So, it has to end with \(b \). Now, let \(w_1 = aub \), hence, every prefix of \(u \) has at least as many \(a's \) as \(b's \). Therefore,

\[
S \Rightarrow^* u
\]

Combining \(S \Rightarrow^* w_1 \), \(S \Rightarrow^* w_2 \) and \(S \Rightarrow^* u \), we have:

\[
S \Rightarrow aSbS \Rightarrow^* aubS \Rightarrow^* aubw_2 = w_1w_2 = w.
\]

- There is no \(1 \leq i \leq m \) such that \(f_w(i) = 0 \). Equivalently:
 \[
f_w(i) > 0 \quad \text{for every } 1 \leq i \leq m \quad (1)
\]
 Let \(w = aw_1 \) (since \(w \) must start with \(a \)). Now, \(f_{w_1}(i) = f_w(i) - 1 \), for every \(i = 1, \ldots, |w_1| \). By \(f_{w_1} \geq 0 \). By the induction hypothesis, \(S \Rightarrow^* w_1 \). Therefore, \(S \Rightarrow aS \Rightarrow^* aw_1 = w \).

Note: By the proof above, we can indeed simplify the grammar \(\mathcal{G} \) to be:

\[
S \rightarrow aS \mid aSb \mid SS \mid \epsilon
\]

(5) The statement is true.

Let \(A_1 = \langle \Sigma, \Gamma, Q_1, q_{01}, F_1, \delta_1 \rangle \) be a PDA and \(A_2 = \langle \Sigma, Q_2, q_{02}, F_2, \delta_2 \rangle \) be an NFA.

Construct the following PDA \(A = \langle \Sigma, \Gamma, Q, q_0, F, \delta \rangle \) that simulates both \(A_1 \) and \(A_2 \) simultaneously.

- \(Q = Q_1 \times Q_2 \).
\[q_0 = (q_{01}, q_{02}) \cdot \]
\[F = F_1 \times F_2 \cdot \]
\[\delta \text{ is defined as follows.} \]
\[\quad - \text{For every } (p_1, x, \text{pop}(y) \rightarrow (q_1, \text{push}(z)) \in \delta_1, \text{ where } x \neq \epsilon \text{ and } (p_2, x, q_2) \in \delta_2, \text{ the following transition is in } \delta:} \]
\[((p_1, p_2), x, \text{pop}(y) \rightarrow ((q_1, q_2), \text{push}(z)) \cdot \]
\[\quad - \text{For every } (p_1, x, \text{pop}(y) \rightarrow (q_1, \text{push}(z)) \in \delta_1, \text{ where } x = \epsilon, \text{ for every } p_2 \in Q_2, \text{ the following transition is in } \delta:} \]
\[((p_1, p_2), x, \text{pop}(y) \rightarrow ((q_1, p_2), \text{push}(z)) \cdot \]

That \(\mathcal{A} \) accepts precisely \(L(\mathcal{A}_1) \cap L(\mathcal{A}_2) \) can be proved in a similar manner as the fact that regular languages are closed under intersection.