Lesson 12: Basic time and space complexity classes

Theme: Classification of languages/problems according to number of steps (time) and cells (space) needed by Turing machines to decide them.

In the following let \(\mathbb{N} \) denote the set of natural numbers \(\{0, 1, 2, \ldots\} \), and \(f, g \) are functions from \(\mathbb{N} \) to \(\mathbb{N} \). Recall the big ‘oh’ notation \(f(n) = O(g(n)) \), which means that there is \(c > 0 \) and \(n_0 \) such that for every \(n \geq n_0 \),

\[
f(n) \leq c \cdot g(n).
\]

1 Time complexity

Deterministic Turing machines. We say that a DTM \(M \) accepts \(w \) in \(N \) steps, if \(M \) accepts \(w \) and the length of the accepting run is \(N \):

\[
C_0 \vdash C_1 \vdash \cdots \vdash C_N \quad \text{where } C_N \text{ is an accepting configuration.}
\]

Likewise, we can say that \(M \) rejects \(w \) in \(N \) steps, if \(M \) rejects \(w \) and the length of the rejecting run is \(N \):

\[
C_0 \vdash C_1 \vdash \cdots \vdash C_N \quad \text{where } C_N \text{ is a rejecting configuration.}
\]

We say that \(M \) decides \(w \) in \(N \) steps, if it either accepts or rejects \(w \) in \(N \) steps. Equivalently, we may also say that on input \(w \), \(M \) runs in \(N \) steps.

Definition 12.1 Let \(f : \mathbb{N} \to \mathbb{N} \). We say that a DTM \(M \) decides a language \(L \) in time \(O(f(n)) \), if there is a constant \(c > 0 \) and a constant \(n_0 \) such that for every word \(w \) with length \(\geq n_0 \), \(M \) decides \(w \) in \(\leq c \cdot f(|w|) \) steps.

Definition 12.2 For a function \(f : \mathbb{N} \to \mathbb{N} \), we define the class \(\text{DTIME}[f(n)] \) as follows.

\[
\text{DTIME}[f(n)] := \{L \mid \text{there is a DTM } M \text{ that decides } L \text{ in time } O(f(n))\}
\]

Of particular interest are the classes \(\text{DTIME}[n], \text{DTIME}[n^2], \text{DTIME}[n^3], \ldots \). The class \(\mathbf{P} \) is defined as follows.

\[
\mathbf{P} := \bigcup_{k \geq 1} \text{DTIME}[n^k]
\]

Note that the class \(\mathbf{P} \) is closed under complement, union and intersection.

Non-deterministic Turing machines. We say that an NTM \(M \) accepts \(w \) in \(N \) steps, if there is an accepting run of \(M \) on \(w \) with length \(N \):

\[
C_0 \vdash C_1 \vdash \cdots \vdash C_N \quad \text{where } C_N \text{ is an accepting configuration.}
\]

We say that \(M \) decides \(w \) in \(N \) steps, if **every** run of \(M \) on \(w \) is of length \(\leq N \).
Definition 12.3 Let \(f : \mathbb{N} \to \mathbb{N} \). We say that an NTM \(M \) decides a language \(L \) in time \(O(f(n)) \), if there is a constant \(c > 0 \) and a constant \(n_0 \) such that for every word \(w \) with length \(\geq n_0 \), \(M \) decides \(w \) in \(\leq c \cdot f(|w|) \) steps.

Definition 12.4 For a function \(f : \mathbb{N} \to \mathbb{N} \), we define the class \(\text{Ntime}[f(n)] \) as follows.

\[
\text{Ntime}[f(n)] := \{ L \mid \text{there is an NTM } M \text{ that decides } L \text{ in time } O(f(n)) \}
\]

Of particular interest are the classes \(\text{Ntime}[n], \text{Ntime}[n^2], \ldots \). The class \(\text{NP} \) is defined as follows.

\[
\text{NP} := \bigcup_{k \geq 1} \text{Ntime}[n^k]
\]

Of particular interest is also the following class.

\[
\text{coNP} := \{ L \mid \Sigma^* - L \in \text{NP} \}
\]

2 Space complexity

Definition 12.5 Let \(f : \mathbb{N} \to \mathbb{N} \).

- A DTM \(M \) decides a language \(L \) in space \(O(f(n)) \), if there is a constant \(c > 0 \) and a constant \(n_0 \) such that for every word \(w \) with length \(\geq n_0 \), the run of \(M \) on \(w \) uses/visits \(\leq c \cdot f(|w|) \) cells of its tape.
- An NTM \(M \) decides a language \(L \) in space \(O(f(n)) \), if there is a constant \(c > 0 \) and a constant \(n_0 \) such that for every word \(w \) with length \(\geq n_0 \), every run of \(M \) on \(w \) uses/visits \(\leq c \cdot f(|w|) \) cells of its tape.

For a function \(f : \mathbb{N} \to \mathbb{N} \), we can define the class \(\text{Dspace}[f(n)] \) and \(\text{Nspace}[f(n)] \) as follows.

\[
\text{Dspace}[f(n)] := \{ L \mid \text{there is a DTM } M \text{ that decides } L \text{ in space } O(f(n)) \}
\]

\[
\text{Nspace}[f(n)] := \{ L \mid \text{there is an NTM } M \text{ that decides } L \text{ in space } O(f(n)) \}
\]

\[
\text{coNspace}[f(n)] := \{ L \mid \Sigma^* - L \in \text{Nspace}[f(n)] \}
\]

Polynomial space. Of particular interest are the classes \(\text{Dspace}[n^k] \) and \(\text{Nspace}[n^k] \). The classes \(\text{PSPACE} \) and \(\text{NPSPACE} \) are defined as follows.

\[
\text{PSPACE} := \bigcup_{k \geq 1} \text{Dspace}[n^k]
\]

\[
\text{NPSPACE} := \bigcup_{k \geq 1} \text{Nspace}[n^k]
\]

\[
\text{coNPSPACE} := \bigcup_{k \geq 1} \text{coNspace}[n^k] = \{ L \mid \Sigma^* - L \in \text{NPSPACE} \}
\]
Logarithmic space. Another interesting classes are L and NL. We say that a language L is in L, if there is a 2-tape DTM M that decides L such that on input word w:

- The first tape always contains only the input word w, i.e., M never changes the content of the first tape.
- M uses/visits $\leq c \cdot \log(|w|)$ cells of its second tape.

Likewise, we say that a language L is in NL, if there is a 2-tape NTM M that decides L such that the above two conditions are satisfied.

3 Some classic complexity results

Obviously, we have $L \subseteq NL, P \subseteq NP$, and $PSPACE \subseteq NPSPACE$.

Proposition 12.6

- $L \subseteq P$.
- $NP \subseteq PSPACE$.

The following are classic results in complexity theory. (We will not prove them in the class.)

- $NL \subseteq P$.
- If $L \in NSPACE[n^k]$, then $\Sigma^* - L \in NSPACE[n^k]$.
- $NSPACE[n^k] \subseteq DSPACE[n^{2k}]$.

The second bullet implies that $coNSPACE[n^k] = NSPACE[n^k]$, and hence, $NPSPACE = coNPSPACE$. The third bullet implies that $NPSPACE = PSPACE$.

Combining all these inclusions together, we obtain:

$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE$

It is also known that $L \nsubseteq PSPACE$ (which we will not prove in the class). In fact, we also know that $NL \nsubseteq PSPACE$. So, we know that at least one of the inclusions must be strict, but we don’t know which one.