Lesson 10: Universal Turing machine and Halting problem

Theme: Universal Turing machine and Halting problem

The string representation of a Turing machine. Recall that a Turing machine is defined as a system \(M = \langle \Sigma, \Gamma, Q, q_0, q_{\text{acc}}, q_{\text{rej}}, \delta \rangle \), where we can assume that \(\Sigma = \{0, 1\} \) and \(\Gamma = \{\langle, 0, 1, \sqcup\} \). Without loss of generality, we can also assume that \(Q = \{0, 1, \ldots, n\} \) for some positive integer \(n \) with 0 being the initial state.

We note the following.

- Each state \(i \in Q \) is written as a string in its binary form.
- Each transition \((i, a) \rightarrow (j, b, \alpha) \in \delta\) can be written as string over the symbols \(0, 1, (,) , \langle, \sqcup , L, R, S \), where the symbol \(\sqcup \) represents \(\sqcup \), and \(L, R, S \) represent Left, Right, Stay, respectively.

So, the whole system \(M = \langle \Sigma, \Gamma, Q, q_0, q_{\text{acc}}, q_{\text{rej}}, \delta \rangle \) can be written as a string:

\[
[\Sigma] \# [\Gamma] \# [Q] \# [0] \# [q_{\text{acc}}] \# [q_{\text{rej}}] \# [\delta]
\]

where \([\cdot]\) denotes the string representing the component \(\cdot \) and \(\# \) the symbol separating two consecutive components.

This shows that every Turing machine (whose tape alphabet is \(\Gamma = \{\langle, 0, 1, \sqcup\}\}) can be described as a string over a fixed set of the symbols, i.e., \(0, 1, (,) , \langle, \sqcup , L, R, S, \# \). All these symbols can be further encoded into strings over 0 and 1 to obtain a binary string, which we denote by \([M] \). That is, \([M] \) is the binary string representing the Turing machine \(M \). Sometimes, we will also say \([M] \) is the string description of \(M \), or the description of \(M \), for short.

Universal Turing machine (UTM). A universal Turing machine (UTM) is a Turing machine \(U \) that gets as input a description of a Turing machine \([M] \) and a word \(w \). On such input, it simulates \(M \) on \(w \). (Some textbooks use the phrase “it runs \(M \) on \(w \)” for “it simulates \(M \) on \(w \).”)

Halting problem. We define the following languages:

\[
\text{HALT} := \{ [M] \$w \mid M \text{ accepts } w \text{ where } w \in \{0, 1\}^* \}.
\]

\[
\text{HALT}_0 := \{ [M] \mid M \text{ accepts } [M] \}.
\]

\[
\text{HALT}'_0 := \{ [M] \mid M \text{ does not accepts } [M] \}.
\]

Theorem 10.1 \(\text{HALT}'_0 \) is undecidable.

Corollary 10.2 \(\text{HALT}_0 \) and \(\text{HALT} \) are undecidable.

Proposition 10.3 The language \(\text{HALT}_0 \) and \(\text{HALT} \) are recognizable (recursively enumerable).

Recall that if both \(L \) and its complement \(\overline{L} = \Sigma^* - L \) are recognizable, then both are decidable. Then, the following corollary follows immediately from above.

Corollary 10.4 The language \(\overline{\text{HALT}} \) is not recognizable (recursively enumerable).

*Obviously, since we consider only Turing machines with \(\Sigma = \{0, 1\} \) and \(\Gamma = \{\langle, 0, 1, \sqcup\} \), it is not necessary to include them in \([M] \). But for the sake of consistency in our notation, we simply include them.