Lesson 2: Deterministic finite state automata

Theme: Deterministic finite state automata.

A deterministic finite state automaton (DFA) is a system $\mathcal{A} = \langle \Sigma, Q, q_0, F, \delta \rangle$, where each component is as follows.

- Σ is the alphabet.
- Q is a finite set of states.
- $q_0 \in Q$ is the initial state.
- $F \subseteq Q$ is the set of final states.
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function.

Remark 2.1 A DFA $\mathcal{A} = \langle \Sigma, Q, q_0, F, \delta \rangle$ can be visualised as a directed graph as follows.

- The vertices are elements of Q.
- There is an edge from p to p' labeled with a, if $\delta(p, a) = p'$.

On input word $w = a_1 \cdots a_n$, the run of \mathcal{A} on w is the sequence:

$$p_0 \ a_1 \ p_1 \ a_2 \ p_2 \ \cdots \ a_n \ p_n,$$

where $p_0 = q_0$ and $\delta(p_i, a_{i+1}) = p_{i+1}$, for each $i = 0, \ldots, n - 1$.

Sometimes we are interested in a run that does not start from the initial state. In that case, we can define the run of \mathcal{A} on w starting from state q as the sequence defined as above, but with condition $p_0 = q$. That is,

$$p_0 \ a_1 \ p_1 \ a_2 \ p_2 \ \cdots \ a_n \ p_n,$$

where $p_0 = q$ and $\delta(p_i, a_{i+1}) = p_{i+1}$, for each $i = 0, \ldots, n - 1$.

A run is called an accepting run, if $p_0 = q_0$ and $q_n \in F$. We say that \mathcal{A} accepts w, if there is an accepting run of \mathcal{A} on w. The language of all words accepted by \mathcal{A} is denoted by $L(\mathcal{A})$.

A language L is called a regular language, if there is a DFA \mathcal{A} such that $L(\mathcal{A}) = L$.

Remark 2.2 Let $\mathcal{A} = \langle \Sigma, Q, q_0, F, \delta \rangle$ be a DFA.

- The empty string ε is accepted by \mathcal{A} if and only if $q_0 \notin F$.
- For every word w, there is exactly one run of \mathcal{A} on w.

Theorem 2.3 Regular languages are closed under boolean operations, i.e., intersection, union, and complementation. More formally, it can be stated as follows.

- For every DFA \mathcal{A}, there is a DFA \mathcal{A}' such that $L(\mathcal{A}') = \Sigma^* - L(\mathcal{A})$.
- For every two DFA \mathcal{A}_1 and \mathcal{A}_2, there is a DFA \mathcal{A}' such that $L(\mathcal{A}') = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$.
- For every two DFA \mathcal{A}_1 and \mathcal{A}_2, there is a DFA \mathcal{A}' such that $L(\mathcal{A}') = L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$.