Lesson 1: Preliminaries

Theme: Review of some basic facts from discrete mathematics.

1 Sets

- A set is a collection of things, which are called its members or elements.

 \(a \in X \) (read: \(a \) is in \(X \), or \(a \) belongs to \(X \)) means \(a \) is a member or an element of \(X \), whereas \(a \notin X \) means \(a \) is not a member of \(X \).

- An empty set is denoted by \(\emptyset \).

- \(X \) is a subset of \(Y \), denoted by \(X \subseteq Y \), if every element of \(X \) is also an element of \(Y \).

- \(X \) is a proper subset of \(Y \), denoted by \(X \subset Y \), if \(X \neq Y \) and \(X \subseteq Y \).

- For two sets \(X \) and \(Y \), we write \(X \cap Y \) and \(X \cup Y \) to denote their intersection and union, respectively.

- The cartesian product between two sets \(X \) and \(Y \) is the following.

 \[X \times Y := \{(a, b) \mid a \in X \text{ and } b \in Y\} \]

 We write \(X^n \) to denote \(X \times \cdots \times X \), where \(X \) appears \(n \) time.

2 Relations

- A relation \(R \) over two sets \(X, Y \) is a subset of \(X \times Y \).

- A binary relation \(R \) over \(X \) is a subset of \(X \times X \).

- An \(n \)-ary relation \(R \) over \(X \) is a subset of \(X^n \).

3 Functions

- A relation \(R \) over \(X, Y \) is a function or a mapping, if for every \(x \in X \), there is exactly one \(y \in Y \) such that \((x, y) \in R\).

 In this case, we will say \(R \) is a function from \(X \) to \(Y \), or \(R \) maps \(X \) to \(Y \). We denote it by \(R : X \rightarrow Y \).

- We will usually use the letters \(f, g, h, \ldots \) to represent functions. As usual, we write \(f(x) \) to denote the element \(y \) in which \((x, y) \in f\).

- A function \(f : X \rightarrow Y \) is an injective function, if for every \(y \in Y \), there is at most one \(x \in X \) such that \(f(x) = y \). An injective functions is also called an injection.

- A function \(f : X \rightarrow Y \) is a surjective function, if for every \(y \in Y \), there is at least one \(x \in X \) such that \(f(x) = y \).

- A function \(f : X \rightarrow Y \) is a bijection, if it is both injective and surjective.
4 Equivalence relations

The symbol \sim is reserved to denote a special relation, called equivalence relation. Using the standard notation, we write $x \sim y$ to mean that the pair (x, y) belongs to the relation \sim.

Recall that \sim being an equivalence relation (over some set, say, X) means it satisfies the following conditions.

- Reflexive: $x \sim x$, for every $x \in X$.
- Symmetric: $x \sim y$ if and only if $y \sim x$, for every $x, y \in X$.
- Transitive: for every $x, y, z \in X$, if $x \sim y$ and $y \sim z$, then $x \sim z$.

For $x \in X$, the equivalence class of x in \sim is defined as:

$$[x]_\sim := \{ y \mid x \sim y \}$$

Theorem 1.1 If \sim is an equivalence relation over X, then the following holds.

- $[x]_\sim = [y]_\sim$ if and only if $x \sim y$.
- If $[x]_\sim \neq [y]_\sim$, then $[x]_\sim \cap [y]_\sim = \emptyset$.
- The equivalence classes of \sim partition X, i.e., every member of X belongs to exactly one equivalence class of \sim.

5 Countable and uncountable sets

Let \mathbb{N} be the set of natural numbers $\{0, 1, 2, \ldots\}$. A set X is countable, if there is an injective function from X to \mathbb{N}. Otherwise, it is called an uncountable set.

Theorem 1.2 The following sets are all countable.

- The set $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ of integers.
- The set \mathbb{N}^k, for every integer $k \geq 1$.
- The set $\mathbb{N}^* := \bigcup_{k \geq 1} \mathbb{N}^k$.

Theorem 1.3 The set $2^\mathbb{N}$ is uncountable.

6 The notion of alphabets and languages

- An alphabet is a finite set of symbols. We usually use the symbol Σ to denote an alphabet.
- A (finite) string/word over Σ is a finite sequence of symbols from Σ.
- We will usually write $w = a_1 \ldots a_n$ to denote a word whose label in position i is a_i. The length of w is denoted by $|w|$.
- We write ε to denote the empty string/word, i.e., the word of length 0.
- For an integer $n \geq 0$, Σ^n denotes all the words over Σ of length n.
- Σ^* denotes the set of all finite words over Σ, i.e., $\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$.
- A language L over Σ is a subset of Σ^*.

Theorem 1.4 For every alphabet Σ, the set Σ^* is countable.
Appendix

In this course it is important to be able to read mathematical/formal statements. It will take a while to get used to them. One important aspect of a formal statement is its use of “quantifiers.” Consider the following statement.

Every student stays in a dormitory room. \hspace{2cm} (1)

If we want to write in strict logical form, we will have to write it in the following way.

For every student \(x\), there is a dormitory room \(y\) such that \(x\) stays in \(y\).

“For every” and “there exists” in the above sentence are called quantifiers.

The negation of statement (1) is:

There is student \(x\), for every dormitory room \(y\) such that \(x\) does not stays in \(y\). \hspace{2cm} (2)

Note also that neither (1) nor (2) are equivalent to the following sentence:

There is student \(x\), for every dormitory room \(y\) such that \(x\) stays in \(y\). \hspace{2cm} (3)